
TRAP/BPEL: A Framework for Dynamic Adaptation of
Composite Services

Technical Report: FIU-SCIS-2006-06-02

Onyeka Ezenwoye and S. Masoud Sadjadi

Autonomic Computing Research Laboratory
School of Computing and Information Sciences

Florida International University
{oezen001,sadjadi}@cs.fiu.edu

Abstract. TRAP/BPEL is a framework that adds autonomic behavior into ex-
isting BPEL processes automatically and transparently. We define an autonomic
BPEL process as a composite Web service that is capable of responding to changes
in its execution environment (e.g., a failure in a partner Web service). Unlike other
approaches, TRAP/BPEL does not require any manual modifications to the origi-
nal code of the BPEL processes and there is no need to extend the BPEL language
nor its BPEL engine. Furthermore, TRAP/BPEL promotes the reuse of code in
BPEL processes as well as in their corresponding autonomic behavior. In this pa-
per, we describe the details of the TRAP/BPEL framework and use a case study
to demonstrate the feasibility and effectiveness of our approach.

Keywords: TRAP/BPEL, generic proxy, self-management, dynamic service discovery.

1 Introduction

Service Oriented Computing (SOC) allows for reusable components to be discovered
and dynamically integrated to create new applications. Web services play a vital role in
facilitating the realization of the SOC paradigm. With Web services, autonomous, self-
contained and remotely accessible components can be integrated to create aggregate
services. The characteristics of Web services that make them so suitable for SOC also
present big challenges to their reliability. Specifically, these challenges arise from the
following: (1) the autonomy of the services in any interaction gives rise to concerns
about their continued availability and trust (i.e., those service will actually do what they
are expected to do) (2) the best-effort delivery method of the communication channel
through which these service interact is known to be unreliable (3) the availability of the
many number of new services that are being developed often makes composed services
quickly obsolete and leads to the frequent redevelopment.

As an example, nodes on computational Grids are currently being exposed as ser-
vices to ensure openness. Grid programming environments [23] allow for the creation
of applications that integrate Grid services for coordinated problem solving (e.g., for
Bioinformatics and Computational Chemistry). For such applications, when a Grid ser-
vice partner fails, the whole application fails and has to be restarted even though there
are other nodes on the Grid that can substitute for the failed service [24]. This problem

is made more sever by the fact that such applications are often long running. This con-
cern is major characteristic of composed services, but it is often not addressed in the
specification of composition languages since it is orthogonal. There is therefore, a need
to make aggregate services adaptable. Our work focuses on adapting services composed
using Business Process Execution Language (BPEL), a common XML-based language
for composing aggregate Web services.

Any adaptation framework for composed services must be able to deal with all the
issues raised above. It should be possible to adapt existing applications so that they can
discover and bind to new services when their original partner services fail or become
too slow. Adapted services should be able to deal with unanticipated faults while still
providing a reasonable level of service. Also, because of the very dynamic nature of
SOC, any adaptation framework needs to enable the separation of concerns [7, 19].
That is, it needs to allow for the separate development of the functional from the non-
functional requirements of the application by not entangling the code for QoS with the
code for business logic.

The focus of our ongoing research is on how to transparently adapt existing aggre-
gate service to encapsulate autonomic (self-management) behavior [17] and make them
more resilient to failure. Specifically, we aim to make an aggregate Web service con-
tinue its valid function even after one or more of its constituent Web services have failed.
To achieve this, we developed the RobustBPEL framework [12, 13] for automatically
adapting BPEL processes, to monitor the invocation of their partner Web services at
runtime. To achieve this, events such as faults and timeouts are monitored from within
the adapted process. An adapted process is augmented with a specific proxy that re-
places failed services with predefined or newly discovered alternatives. We say a proxy
is specific if its interface is an aggregation of the interfaces of all the monitored part-
ner services of the adapted BPEL processes. In managing failed invocations, the fault
tolerance and performance of BPEL processes is improved and the behavior adapted
transparently. Transparency ensures that the adaptation preserves the original behavior
of the business process and does not tangle the code that provides autonomic behavior
with that of the business logic of the process [22].

While with the use of a specific proxies we are able to adequately encapsulate auto-
nomic attributes and replace failed services, development and maintenance of specific
proxies for a vast number of available services is quite cumbersome. In this paper we
present a solution to this problem by introducing the use of generic proxies rather than
specific ones. We show how with the use of generic proxies and some recovery policies
we are able to extend the autonomic capabilities of adapted BPEL processes. Also we
show the design of the generic proxy, details of the adaptation process.

The rest of this paper is is structured as follows. Section 2 provides a background
on our adaptation method. Section 3 motivates the need for generic proxies. Section 4
describes the generic proxy. In section 5 we use a case study to demonstrate the fea-
sibility and usefulness of our approach. Section 6 contains some related work. Finally,
some concluding remarks and a discussion on further research directions are provided
in Section 7.

2 Background

In this section, we provide some background information for Web services, BPEL, Au-
tonomic Computing, Transparent Shaping, and RobustBPEL. You can safely skip this
section if you are familiar with all the above concepts, technologies, and frameworks.

2.1 Web Services & BPEL

A Web service is a software component that can be programmatically accessed over
the Internet. The goal of the Web services architecture [6] is to simplify application-
to-application integration. The technologies in Web services are specifically designed
to address the problems faced by traditional middleware technologies in the flexible
integration of heterogeneous applications over the Internet. Its lightweight model has
neither the object model nor programming language restrictions imposed by other tra-
ditional middleware systems (e.g., DCOM and CORBA) and its messaging protocol
ensures that packets are able to traverse Internet firewalls. The interface to a Web ser-
vice is described in Web services Description Language (WSDL) [20].

Applications that provide specific business functions (e.g., price quotation) are in-
creasingly being exposed as Web services. These services then become reusable com-
ponents that can be the building blocks for more complex aggregate services (business
processes). To facilitate the creation of business processes, a high-level workflow lan-
guage, such as Business Process Execution Language (BPEL) [11,25], is used. BPEL is
an XML-based workflow language that weaves together basic and structured activities
to create the logic of a business process. A basic activity is a primitive BPEL activity
that performs an atomic action, while a structured activity is derived from a combi-
nation of several activities. For example, the invoke activity is a basic activity that
performs an operation on a partner Web service. Structured activities specify the order
in which combined activities execute. The XML grammer that defines a BPEL process
is interpreted and executed by a virtual machine called a BPEL engine. Although the
BPEL specification provides constructs for fault handling and event handling (such as
timeout), such language constructs are not sufficient to make a BPEL process self-
manageable. The management of non-functional issues is assumed to be a function of
the BPEL engine [4].

2.2 Autonomic Computing & Transparent Shaping

Autonomic computing [17] promises to solve the management problem by embedding
the management of complex systems inside the systems themselves, freeing the users
from potentially overwhelming details. The ultimate goal of autonomic computing is
to create self-managing systems that are able to function with very little direct hu-
man intervention. A Web service is said to be autonomic if it encapsulates some au-
tonomic attributes [14]. Autonomic attributes include (1) Self-Configuration: for the
automatic configuration of components (2) Self-Optimization: for automatic monitor-
ing and control (3) Self-Healing: for automatic discovery, and management of faults (4)
Self-Protection: for automatic identification and protection from attacks or failure. The

focus of our ongoing research is to encapsulate self-management behavior in composed
services.

As BPEL language constructs and its programming model are not sufficient to en-
capsulate self-management behavior inside the processes, we use Transparent Shap-
ing [22] to augment BPEL processes with self-management behavior. Transparent Shap-
ing is a new programming model that provides dynamic adaptation in applications. Its
goal is to adapt existing applications in order to better respond to changes in their non-
functional requirements or execution environment [22]. In transparent shaping, an ap-
plication is augmented with hooks that intercept and redirect interaction to adaptive
code. An adapted application is said to be adapt-ready. The adaptation is transparent
because it preserves the original functional behavior and does not tangle the code that
provides the new behavior (adaptive code) with the application code. By adapting exist-
ing applications, transparent shaping aims to achieve a separation of concerns [7, 19].
That is, enabling the separate development of the functional requirements from the non-
functional requirements of an application.

2.3 RobustBPEL

RobustBPEL [12,13] is a framework that we developed as part of the transparent shap-
ing programming model. Using RobustBPEL, we can automatically generate an adapt-
ready version of an existing BPEL process. We note that in our previous study, we
focused on adding self-healing and to some extent self-optimization behavior to ex-
isting BPEL processes. Specifically, our goal was to make an aggregate Web service
continue its valid function after one or more of its constituent Web services have failed
or is determined to be slow.

An adapt-ready process generated by Robust-BPEL is capable of monitoring the
invocation of its Web service partners and will tolerate their failure. An adapt-ready
process is augmented with invocations to a proxy service through which autonomic be-
havior is provided. We have developed two versions of RobustBPEL. In RobustBPEL-
1 [12] a static proxy is used, whereas in RobustBPEL-2 [13] uses a dynamic proxy.
Both the static and dynamic proxies are specifically generated for the BPEL processes
they augment.

To understand how the static and dynamic proxies work, in Figure 1 we have pro-
vided three architectural diagrams showing the differences between the sequence of
interactions among the components in a typical aggregate Web service and its cor-
responding generated adapt-ready versions. In a typical aggregate Web service (Fig-
ure 1(a)), first a request is sent by the client program, then the aggregate Web service
interacts with its partner Web services (i.e., WS1 to WSn) and responds to the client.
If one of the partner services fails, then the whole process is subject to failure. To avoid
such situations, adapt-ready process monitors the behavior of it partners and tries to
tolerate their failure by forwarding the failed request to its proxy, which in its turn will
find an equivalent service to substitute the failed one1.

1 At this point in our research, we make the assumption that two services are equivalent, if they
implement the same port type. A port type is similar to an interface in the Java programming
language. So, when two Web services implement the same port type, only their internal imple-

(a) Architecture of a typical aggregate Web service.

(b) Architecture of RobustBPEL-1 [12] using a static
proxy.

(c) Architecture of RobustBPEL-2 [13] using a dynamic
proxy.

Fig. 1. Sequence of interactions among the components in three different settings.

As monitoring all the partner Web services might not be necessary, the developer
can select only a subset of Web service partners to be monitored. For example, in Fig-
ure 1(b) WSi and WSj have been selected for monitoring. The adapt-ready process
monitors these two partner Web services and in the presence of faults it will forward
the corresponding request to the static proxy. The static proxy is generated specifically
for this adapt-ready process and provides the same port types as those of the moni-
tored Web services (i.e., pti and ptj). Thus, the operations and input/output variables
of the proxy are the same as those of the monitored invocations. When more than one
service is monitored within a BPEL process, the interface for the specific proxy is an

mentations may vary, their interfaces remain the same. In other words, applications with the
same functional requirement are equivalent, regardless of implementation.

aggregation of all the interfaces of the monitored Web services. The static proxy in its
turn forwards the request to an equivalent Web service. Information about equivalent
services is “hardwired” into the code of this proxy at the time it was generated. This
means that the number of choices for equivalent services are limited to those known at
the time the static proxy was generated.

Given the rapid uptake of the SOC, we expect the emergence of numerous ser-
vices that are functionally equivalent and thus can be substituted [15]. Therefore, in
RobustBPEL-2 we replaced the static proxies with dynamic proxies that can find equiv-
alent services at run time. As illustrated in Figure 1(c), the job of a dynamic proxy is
to discover and bind equivalent Web services that can substitute for monitored services.
Similar to a static proxy, the interface for the generated dynamic proxy is exactly the
same as that of the monitored Web service.

As illustrated in Figure 1(c), when the dynamic proxy is invoked upon failure of a
monitored service, the proxy makes queries against a registry service to find equivalent
services. During the lifetime of the business process, more services that can be used
as substitutes could be published with the registry. The registry technology used in
the RobustBPEL fremework is the Universal Description, Discovery and Integration
protocol (UDDI) [1], which is a specification for the publication and discovery of Web
services. UDDI specifies a set of data structures, messages and API for creating and
maintaining information about Web services in distributed registries.

3 Why TRAP/BPEL and Generic Proxies?

Although the RobustBPEL framework is able to provide some self-healing and self-
optimizing behavior, it is limited in the level of adaptive behavior it can provide. Recall
that the static and dynamic proxies only intercepts the normal operation of a BPEL
process if a fault occurs upon the invocation of a partner Web service (Figures 1(b)
and 1(c)). Therefore, RobustBPEL will only exhibit adaptive behavior upon the occur-
rence of a fault. Even after a service is determined to be faulty, the default invocation
to that service will still have to be made before the adaptive code can intervene. So
RobustBPEL is not able to proactively self-protect by preventing the invocation of a
faulty service. Also self-optimization can be extended by providing a choice for service
invocation. If some other service is determined to provide better QoS than the default
service in the composition, it should be possible to switch to the better service (even
if temporarily). The adapt-ready process from RobustBPEL is also not dynamically re-
configurable. Recall that during the adaptation process, a timeout is inserted as part of
the monitoring code around selected service invocations. In order to change the value
associated with this timeout event, another adapt-ready process will have to be gener-
ated. RobustBPEL therefore does not support self-configuration.

In addition to the above limitation, we note that each proxy service generated by Ro-
bustBPEL is specific to one BPEL process and cannot be reused for any other processes.
Therefore, it is not possible to provide a common autonomic behavior to a set of ser-
vices. A proxy will have to be generated for every process. This lack of reuse and
the maintenance overhead that comes from having many proxies runs counter to the

promise of autonomic computing and SOC. In the rest of this paper, we show how
TRAP/BPEL addresses the above limitations by using a generic proxy.

4 Generic Proxies

For the TRAP/BPEL framework we have developed a generic proxy that has a stan-
dard interface and works for all partner services of one or more adapt-ready BPEL
processes. A recovery policy is used in the proxy to dictate the adaptive behavior for
each monitored service. Apart from the used of a generic, a different approach is used
in the process of making BPEL processes adapt-ready. In this section, we shows the
high-level architecture of the generic proxy and the generation process.

4.1 High-Level Architecture

Figure 2 illustrates the architectural diagram of TRAP/BPEL at run time. As can be seen
from the figure, several adapt-ready BPEL processes can be assigned to one generic
proxy, which augments the BPEL processes with self-management behavior. Similar to
the dynamic proxy (Figure 1(c)), the generic proxy uses a look-up mechanism to query
a registry service at runtime for services that can be used to replace failed services. But
unlike the specific proxies (Figures 1(b) and 1(c)), the generic proxy has a standard in-
terface which bears no relation to the interfaces of the monitored services. The generic
proxy in Figure 2 has as interface ptg that is able the accept requests for the any mon-
itored Web services (e.g., WS11 and WSkn partner Web services) with different port
types.

The generic proxy can provide self-management behavior either common to all
adapt-ready BPEL processes or specific to each monitored invocation using some high-
level policies. At this point of our research, these high-level policies are specified in a
configuration file that is loaded at startup time into the generic proxy. We plan to allow
runtime modification to these high-level policies in the future versions of TRAP/BPEL.
Figure 3 shows an example policy file where each unique monitored invocation can have
a policy specified under a <service> element. The <InvokeName> element (line 4)
has a value that uniquely identifies a monitored invocation in an adapt-ready BPEL
process. The generic proxy checks all intercepted invocations and tries to match these
invocations with the specified policies. If it finds a policy for that invocation, the proxy
behaves accordingly, otherwise it follows its default behavior. If a policy exists, the
generic proxy may take one of the following actions according to the policy: (1) invoke
the service being recommended in the policy (line 6); (2) find and invoke another ser-
vice to substitute for the monitored service (3) retry the invocation of the monitored
service in the event of its failure (line 10). The policy also specifies the time interval
between retries (line 12).

The default behavior of the proxy is to consult the registry to find a service that
implements the same port type as the monitored invocation, this service is then invoked
as a substitute.

Fig. 2. Architectural diagram showing the sequence of interactions among the components in
TRAP/BPEL during runtime.

4.2 Incorporating Generic Hooks

Following the Transparent Shaping programming model [22], we first need to incor-
porate some generic hooks at sensitive joinpoints in the original BPEL process. These
joinpoints are certain points in the execution path of the program at which adaptive
code can be introduced at run time. Key to identifying joinpoints is knowing where
in the BPEL process sensing and actuating are required and inserting appropriate code
(hooks) to do so. Because a BPEL process is an aggregation of services, the most appro-
priate place to insert interception hooks is at the interaction joinpoints (i.e., the invoke
instructions) [21]. All the modifications to the BPEL process are in the form of standard
BPEL constructs to ensure the portability of the modified process.

For the RobustBPEL framework, we adapted the existing BPEL processes by wrap-
ping each selected invocation with a BPEL scope that contains fault and event handlers.
For the TRAP/BPEL framework, however, we took a different approach. As listed in
Figure 4, rather than wrapping selected invocations with monitoring code, an invocation
that is selected for monitoring is replaced with an invocation to the generic proxy. This
approach allows more flexibility as to what kind of adaptive behavior to provide. We
note that as the port type of the proxy is generic, all the contents of the original method
invocation are serlialized in the input variable. Therefore, the process of replacing the
target invocation with the proxy invocation involves identifying all the messages that
are needed to create the input message for the proxy. Also, the sequence of activities
needed to deserialize the output message from the proxy need to be created. This is
done in a way that does not affect the original execution sequence of the BPEL process.

1. <Policy>
2. <Service>
3. <!--a unique name for monitored invocation-->
4. <InvokeName value="WS-Invoke"/>
5. <!--WSDL for a default Web service for the monitored invocation-->
6. <WsdlUrl preferred="true" value="http://.../WS-Description.wsdl"/>
7. <!--timeout value for the monitored invocation-->
8. <Timeout seconds="2"/>
9. <!--the number of times to retry the invocation upon failure-->
10. <MaxRetry value="2"/>
11. <!--time to wait between retries-->
12. <RetryInterval seconds="5"/>
13. </Service>
14. <Service>
15. ...
16. </Service>
17. </Policy>

Fig. 3. A portion of a policy file for the generic proxy.

1. <invoke name="InvokeWS11" 1. <invoke name="ProxyInvokeWS11"
2. partnerLink="..." 2. partnerLink="..."
3. portType="pt11" 3. portType="pxns:proxyPT"
4. operation="operation1" 4. operation="genericInvocation"
5. inputVariable="..." 5. inputVariable="..."
6. outputVariable="..."> 6. outputVariable="...">
7. </invoke> 7. </invoke>

Fig. 4. Left: an invocation in the original BPEL. Right: an invocation in the adapt-ready BPEL.

To better understand the need for serlialization and deserialization, we provide a
section of the WSDL of the generic proxy Web service in Figure 5. As can be seen from
its description, the interface for the proxy has two operations: genericInvocation
and extract (lines 22-25 and 26-29 respectively). The input message for the proxy
genericInvocation operation (lines 1-6) has four parts: (1) invokename, which is
used to identify the monitored service; (2) porttype, which identifies the port type of
the monitored invocation (this variable is the unique key used to query the UDDI reg-
istry for services that implement the same interface); (3) operation, which identifies
the exact operation of the port type being called; and (4) variables, which contains
the serialized input message for the monitored service. When the proxy generic-

Invocation operation called with the genericInputMessage, the proxy identifies
which service is being monitored and the necessary details about its invocation. The
proxy can then take one of several actions as specified in the policy file.

At runtime the input message for each monitored service is serialized and used as
part of the input message for the proxy genericInvocation operation. The proxy
invokes any equivalent service with that same input message. Service invocation from
within the proxy is done with the Web Service Invocation Framework (WSIF) [8]. A
reply from the substitute service is serialized into the genericOutputMessage (lines
8-10) and sent back to the adapted BPEL process from the proxy. We need to serialize
the input and output messages (for the monitored invocations) because the proxy needs
the have standard interface through which messages for any service can be sent.

1. <message name="genericInputMessage">
2. <part name="invokename" type="xsd:string"/>
3. <part name="porttype" type="xsd:string"/>
4. <part name="operation" type="xsd:string"/>
5. <part name="variables" type="xsd:string"/>
6. </message>
7.
8. <message name="genericOutputMessage">
9. <part name="reply" type="xsd:string"/>
10. </message>
11.
12. <message name="extractInputMessage">
13. <part name="values" type="xsd:string"/>
14. <part name="param" type="xsd:string"/>
15. </message>
16.
17. <message name="extractReply">
18. <part name="value" type="xsd:string"/>
19. </message>
20.
21. <portType name="proxyPT">
22. <operation name="genericInvocation">
23. <input message="tns:genericInputMessage"/>
24. <output message="tns:genericOutputMessage"/>
25. </operation>
26. <operation name="extract">
27. <intput message="tns:extractInputMessage"/>
28. <output message="tns:extractReply"/>
29. </operation>
30. </portType>

Fig. 5. A section of the WSDL description of the interface of the generic proxy.

When the genericOutputMessage arrives at the adapted BPEL process, it will
need to be deserialized for further processing within the BPEL process, as part of
the original execution. Since BPEL is not a general-purpose programming language,
it lacks the necessary constructs that would be needed to deserialized the generic out-
put message (genericOutputMessage) of the generic proxy. One solution to this
problem, without extending the BPEL language, is to use a partner Web service to per-
form more complicated data manipulation [11]. To this end, we have decided to use the
generic proxy to deserialize the genericOutputMessage.

Since a WSDL message can comprise of one or more parts [5], the deserialza-
tion would have to extract the value for each message part. Therefore, after the adapted
BPEL process receives the genericOutputMessage, it then make a call to the generic
proxy’s extract operation for each part of the reply message. The input message
(extractInputMessage, lines 12-14) for the proxy’s extract operation has two
parts, values and param. The values part contains the serialized genericOutput-
Message and the param parts specifies which parameter value to extract from the
genericOutputMessage. The proxy then sends this value back to the BPEL process.

4.3 The Generation Process

The RobustBPEL framework requires the generation of both the adapt-ready version
of a given BPEL process and its associated specific proxy. However, as TRAP/BPEL

uses generic proxies, the TRAP/BPEL Generator only needs to generate the adapt-
ready BPEL processes. The only input to this generator is a configuration file. First, the
Parser reads the information needed for generating adapt-ready BPEL process and
sends them to the adapt-ready BPEL compiler. Next, the generator uses the information
provided by the parser and retrieves the required files from the local disk and starts
its compilation process. The primary information the generator are the original BPEL
file, the list of which invocation to monitor and the WSDL files for all the partner
Web services. The WSDL files are needed so that the generator can get details about
the specification of the messages that are exchange by the monitored services. This
information is used for the serialization and deserialization of messages.

5 Case Studies
In this section, we use a case study to demonstrate the feasibility of our approach. For
the case study, we start by describing the applications, then we present the configuration
and results of the case study.

5.1 The Google-Amazon Process

The Google-Amazon business process integrates the Google Web service for spelling
suggestions with the Amazon E-Commerce Web service for querying its store catalog.
The business process takes as input a phrase (keywords) which is sent to the Google
spell-checker for corrections. If any word in the input phrase is misspelled, the Google
spell-checker sends back as reply the phrase with the misspelled words corrected (the
phrase is unchanged if the spellings are correct). The reply from the Google service is
used to create keyword search of the Amazon bookstore via the Amazon Web service.

From this original Google-Amazon process, we used the generator to generate the
adapt-ready process. For this adaptation we have selected to have the generator only
adapt the invocation of the Google spell-checker. We then found another publicly avail-
able Spell-checker Web service from Cydne to act a substitute for the Google service.
The differences between the Cydne service and that of Google are in the signature of
their operations. First of all, the operation names are different. Second, the Google ser-
vice takes as input two strings: (1) a license key and (2) a phrase. The Cydne service
also takes as input a license key and a phrase but in the reverse order. Also, rather than
returning a string in which misspelled words have been corrected, the Cydne service
returns a data type that contains the original input string, the misspelled words and an
unranked list of suggested words for each misspelled word.

To overcome these differences, we developed a simple wrapper Web service for the
Cydne spell-checker. This wrapper Web service harmonizes the difference between the
interfaces of the two spell-checkers. In order to be able to select the best word from the
list of suggestions from the Cydne spell-checker, we have incorporated into the wrapper
an open source Java spell-checker API from IBM, called Jazzy. Each misspelled word
identified by the Cydne spell-checker is fed into Jazzy with the list of suggestions as
the dictionary. The highest ranked suggestion from Jazzy is chosen as the return data
for the wrapper Web service. Because we have this wrapper service, there is no need to
register the Cydne service in the UDDI registry, rather, it is the WSDL for the wrapper
service that is mapped to the registry.

5.2 The Loan Approval Process

The Loan-Approval process is a commonly used sample BPEL process. The Loan-
Approval BPEL process is an aggregate Web service composed of two other Web ser-
vices: a low-risk assessor service (LowAssessor) and a high-risk assessor service (High-
Assessor). The Loan-Approval process implements a business process that uses its two
partner services to decide whether a given individual qualifies for a given loan amount.
Both the business process and the risk assessor (simulated) service are deployed locally.
The Loan-Approval BPEL process receives as input a loan request. The loan request
message comprises two variables: the name of the customer and the loan amount. If
the loan amount is less than $10,000, then the risk assessor Web service is invoked,
otherwise the loan approver Web service is invoked. The risk assesement services take
as input the loan request message. After the LowAssessor is invoked, the BPEL process
expects to receive as reply a risk assessment message. This risk assessment message is
a string with a value of either “high” or “low”. When the risk assessment is “low”, the
loan is approved and the Loan-Approval process sends a positive message to the cus-
tomer. If the risk assessment message is “high”, the HighAssessor service is invoked.
The HighAssessor service returns an approval message (“yes” or “no”), which is then
sent as reply to the customer.

Fig. 6. The interaction between the applications and the proxy.

5.3 Configuration and Result

As illustrated in Figure 6, client requests are made to the BPEL process (labeled 1),
which results in the invocations to the generic proxy services (labeled 2). When the
call arrives at the proxy, it uses the policy file (Figure 7) to decide what action to take.
Since the interaction between the proxy and both applications is the same, we will
only describe that of the adapt-ready Google-Amazon process. In this case the policy
is to use the default Google spell-checker. After some successful executions, we made
the endpoint of the Google service WSDL to point to a phantom location. There upon
failure, the generic proxy would query the UDDI registry to find and invoke the wrapper
Web service for the Cydne spell-checker as a substitute (labeled 4 and 5). This shows
self-healing bahavior. The result of the invocation of the substitute is sent back to the
adapt-ready Google-Amazon process and then used as input to query the Amazon store
service. For example, we used “Computer Algorthms” as input keyword to the process,
Google corrected it to “Computer Algorithms”, and Amazon found this book: “Bruce
Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second
Edition”.2 Self-Optimization is achieved through the timeout specified in the policy for
this invocation, upon expiration of this timeout and retries are exhausted, a substitute
is invoked. The use of a caching mechanism helps improve self-optimization. After
the invocation to the Google service failed, its WSDL is purged from the cache and
replaced with that of the Cydne wrapper service which found in the registry. This also
limits the number of queries made to the registry. The cache is cleared at intervals.
Further configuration and optimization can be achieved through runtime modification
of the policy file. This can be done by either a human or machine agent. We plan to add
runtime policy adjustment in the future.

<!-- Policy file for the generic proxy -->
<policy>

<service>
<InvokeName value="GoogleInvoke"/>
<WsdlUrl preferred="true" value="http://.../GoogleSearch.wsdl"/>
<Timeout seconds="2"/>
<MaxRetry value="2"/>
<RetryInterval seconds="2"/>

</service>
<service>

<InvokeName value="InvokeHighAssessor"/>
<WsdlUrl preferred="true" value="http://.../HighAssessor.wsdl"/>
<Timeout seconds="1"/>
<MaxRetry value="2"/>
<RetryInterval seconds="1"/>

</service>
</policy>

Fig. 7. Policy for the generic proxy.

We now use the rest of this case study to show the comparison of the execution time
between the original business processes and their adapt-ready versions. we configured

2 The Amazon store service actually returned a list of books but we only show the first one.

the client applications to run with different number of threads that sequentially make
calls on the processes. As the X-axis of both charts in Figure 8 shows, the number of
total threads we used in this experiment is 50. The initial runs were made against the
original BPEL process. We noted the completion times (in seconds) for each thread.
The result is plotted in the charts in Figure 8 under the original curve. For the original
Loan-Approval process, the average completion time was approximately 0.06 seconds,
while that original Google-Amazon process was 0.82 seconds.

The result of the observed completion times of the adapt-ready verisons is plotted in
Figure 8 under the adapted curve. For the adapted Loan-Approval process, the average
completion time was approximately 0.11 seconds, while that original Google-Amazon
process was 0.86 seconds. This experiment shows that there is a slight overhead of ap-
proximately 0.05 and 0.04 seconds (for Loan-Approval and Google-Amazon processes,
respectively) in completion time incurred by the adapt-ready compared to the original
processes. The redirection through the proxy is responsible for this overhead.

(a) Loan-Approval Process (b) Google-Amazon Process

Fig. 8. This charts shows the comparison of the completions times between the original and adapt-
ready processes.

6 Related Work

Birman et al. [3] propose extensions to the Web services architecture to support mission-
critical applications. They propose the following five extensions; Component Health
Monitoring (CHM), Consistent and Reliable Messaging(CRM), Data dissemination
(DDS), Monitoring and Distributed Control (MDC) and Event notification (EVN). Sim-
ilar to ours, this work aims to improve the reliability of Web services, but it proposes
extensions to the Web services architecture.

Baresi’s approach [2] to monitoring involves the use of annotations that are stated
as comments in the source BPEL program and then translated to generate a target mon-
itored BPEL program. In addition to monitoring functional requirements, timeouts and
runtime errors are also monitored. Whenever any of the monitored conditions indicates

misbehaviour, suitable exception handling code in the generated BPEL program handles
them. This approach is much similar to ours in that monitoring code is added after the
standard BPEL process has been produced. This approach achieves the desired separa-
tion of concern; however, it requires modifying the original BPEL processes manually
and the annotated code is scattered all over the original code. The manual modification
of BPEL code is not only difficult and error prone, but also hinders maintainability.

Charfi et al [4] use an aspect-based container to provide middleware support for
BPEL. The two inputs to the framework are the BPEL process and a deployment de-
scriptor. The descriptor specifies the non-functional requirements (e.g., security, per-
sistence and transactions). The process container is the runtime environment for the
BPEL process. All interactions go through the container which plugs in support for
non-functional requirements. Aspects can be generated using the deployment descrip-
tor to specify the pointcuts. Aspects specify what and how SOAP messages can be
modified to add, for instance, security information to the header. This framework is dif-
ferent form our because it requires a purpose built BPEL engine. Also, the adaptation
is done at a much lower level (the messaging layer).

AdaptiveBPEL [10] is much like Charfi [4], with the only major differences being
that AdaptiveBPEL proposes to augment an existing BPEL engine with aspect weaving
capabilities to address QoS concerns and adapt processes logic. In addition, adaptation
is driven by a policy negotiated at runtime between the interacting endpoints.

Erradi et al. [9] provide reliability through a policy driven middleware named Web
Services Message Bus (wsBus), which is used to transparently enact recovery actions.
The wsBus intercepts the execution of composite services and transparently provides
recovery services based on an extensible set of recovery policies (e.g., retry, skip, and
use equivalent service). The wsBus provides exception-handling and recovers from fail-
ures such as service unavailability and timeout. It also enforces SLA agreements. This
approach is modular and separates the business logic of the process from the QoS re-
quirements, however, adaptation is done at a much lower messaging layer.

Finally, BPELJ [18] is an extension to BPEL. The goal of BPELJ is to improve the
functionality and fault tolerance of BPEL process. This is accomplished by embedding
snippets of Java code in the BPEL process. This however requires a special BPEL en-
gine, thereby limiting its portability of BPELJ processes. The works mentioned above,
although are able to provide some means of monitoring for singular or aggregate Web
services, they do not dynamically replace the delinquent services once failure or exten-
sive delay has been detected.

7 Conclusion and Future Work

We presented an approach to transparently incorporating self-management behavior
into existing BPEL processes. We have introduced the TRAP/BPEL framework and
its generic proxy, and demonstrated how a generic proxy can be used to encapsulate
autonomic behavior through the use of policies. Using a case study, we demonstrated
the autonomic behavior of the generic proxy.

In our future work, we plan to address the following issues. First, we plan to pro-
vide a GUI for developing high-level policies and enabling a developer to modify the

policy at runtime. Second, we realized that the task of improving fault tolerance and
performance for multiple service collaborations is made even more complex if the col-
laborating services are stateful. We plan to apply this approach to grid applications
that integrate WSRF-based stateful services [16]. Finally, we plan to study the existing
ranking systems and adapt one in the TRAP/BPEL framework.

References

1. B. Atkinson et al. UDDI Version 3.0.1. OASIS, 2003.
2. L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for composed services. In ICSOC

’04: Proceedings of the 2nd international conference on Service oriented computing, pages
193–202. ACM Press, 2004.

3. K. P. Birman, R. van Renesse, and W. Vogels. Adding high availability and autonomic behav-
ior to web services. In Proceedings of the 26th International Conference on Software Engi-
neering (ICSE 2004), pages 17–26, Edinburgh, United Kingdom, May 2004. IEEE Computer
Society.

4. A. Charfi and M. Mezini. An aspect based process container for BPEL. In Proceedings of The
First Workshop on Aspect-Oriented Middleware Developement, Genoble, France, November
2005.

5. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. W3C, 1.1 edition, March 2001. Available at URL: http://www.
w3c.org/TR/wsdl.

6. D. Booth et al. . Web Services Architecture. W3C, 2004.
7. E. W. Dijkstra. Structured programming. Software Engineering Techniques, edited by Buxton

and Randell (available from NATO, Brussels), pages 84–87, 1970.
8. M. J. Duftler, N. K. Mukhi, A. Slominski, and S. Weerawarana. Web Services Invocation

Framework (WSIF). IBM T.J. Watson Research Center, August 2001. Available at URL:
http://ws.apache.org/wsif/.

9. A. Erradi and P. Maheshwari. wsBus: QoS-aware middleware for relaible web services
interaction. In IEEE International Conference on e-Technology, e-Commerce and e-Service,
Hong Kong, China, 2005.

10. A. Erradi, P. Maheshwari, and S. Padmanabhuni. Towards a policy driven framework for
adaptive web services composition. In Proceedings of International Conference on Next
Generation Web Services Practices, 2005.

11. O. Ezenwoye and S. M. Sadjadi. Composing aggregate web services in BPEL. In Proceed-
ings of The 44th ACM Southeast Conference, Melbourne, Florida, March 2006.

12. O. Ezenwoye and S. M. Sadjadi. Enabling robustness in existing BPEL processes. In Pro-
ceedings of the 8th International Conference on Enterprise Information Systems (ICEIS-06),
May 2006.

13. O. Ezenwoye and S. M. Sadjadi. Robustbpel-2: Transparent autonomization in aggregate
web services using dynamic proxies. Technical Report FIU-SCIS-2006-06-01, School of
Computing and Information Sciences, Florida International University, 11200 SW 8th St.,
Miami, FL 33199, June 2006.

14. S. Gurguis and A. Zeid. Towards autonomic web services: Achieving self-healing using web
services. In Proceedings of DEAS’05, Missouri, USA, May 2005.

15. J. Hau, W. Lee, and S. Newhouse. The ICENI semantic service adaptation framework. In In
UK e-Science All Hands Meeting, Nottingham, UK, September 2003.

16. M. Humphrey, G. Wasson, K. Jackson, J. Boverhof, M. Rodriguez, J. Bester, J. Gawor,
S. Lang, I. Foster, S. Meder, S. Pickles, , and M. McKeown. State and events for Web ser-
vices: A comparison of five WS-Resource framework and WS-Notification implementations.
In Proceedings of The 4th IEEE International Symposium on High Performance Distributed
Computing, North Carolina, USA, July 2005.

17. J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE Computer,
36(1):41–50, 2003.

18. M. Blow et al. BPELJ: BPEL for Java, A Joint White Paper by BEA and IBM. BEA and
IBM, March 2004.

19. P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing adaptive
software. IEEE Computer, pages 56–64, July 2004.

20. R. Chinnici et al. Web Services Description Language (WSDL) Version 2.0. W3C, 2.0 edition,
March 2004.

21. S. M. Sadjadi and P. K. McKinley. Using transparent shaping and web services to support
self-management of composite systems. In Proceedings of the International Conference on
Autonomic Computing (ICAC’05), pages 88–95, Seattle, Washington, June 2005.

22. S. M. Sadjadi, P. K. McKinley, and B. H. Cheng. Transparent shaping of existing software
to support pervasive and autonomic computing. In Proceedings of the first Workshop on the
Design and Evolution of Autonomic Application Software 2005 (DEAS’05), in conjunction
with ICSE 2005, St. Louis, Missouri, May 2005.

23. R. Sirvent, J. M. Perez, R. M. Badia, and J. Labarta. GRID superscalar: a programming
paradigm for grid applications. In Workshop on Grid Applications Programming, Edinburgh,
Scotland, July 2004.

24. A. Slominski. On using BPEL extensibility to implement OGSI and WSRF grid workflows.
In GGF10 Workshop on Workflow in Grid Systems, Berlin, Germany, March 2004.

25. T. Andrews et al. Business Process Execution Language for Web Services version 1.1. BEA
Systems, International Business Machines Corporation, Microsoft Corporation, SAP AG,
and Siebel Systems., 1.1 edition, May 2003.

