Grid Service Composition in BPEL for
Scientific Applications

Technical Report FIU-SCIS-2007-08-01
August 2007

Onyeka Ezenwoye, S. Masoud Sadjadi, Ariel Cary, and Michael Robinson

School of Computing and Information Sciences
Florida International University, 11200 SW 8th Street, Miami, FL 33199
{oezen001, sadjadi, acary001, mrobi002}@cs.fiu.edu

Abstract. Grid computing aims to create an accessible virtual super-
computer by integrating distributed computers to form a parallel in-
frastructure for processing applications. To enable service-oriented Grid
computing, the Grid computing architecture was aligned with the cur-
rent Web service technologies; thereby, making it possible for Grid appli-
cations to be exposed as Web services. The WSRF set of specifications
standardized the association of state information with Web services (WS-
Resource) while providing interfaces for the management of state data.
Key to the realization of the benefits of Grid computing is the ability
to integrate WS-Resources to create higher-level applications. The Busi-
ness Process Execution Language (BPEL) is the leading standard for
integrating Web services and as such has a natural affinity to the inte-
gration of Grid services. In this paper, we share our experience on using
BPEL to integrate, create, and manage WS-Resources that implement
the factory pattern. We use a Bioinformatics application as a case study
to show how BPEL can be used to orchestrate Grid services. The exe-
cution environment for our case study comprises the Globus Toolkit as
the Grid middleware and the ActiveBPEL as the BPEL engine. To the
best of our knowledge, this work is among the handful approaches that
successfully use BPEL for orchestrating WSRF-based services and the
only one that includes the discovery and management of instances.

Keywords: BPEL, Grid Computing, WSRF, OGSA-DAI, Service Composition.

1 Introduction

Grid computing promises to harness the resources available on disparate dis-
tributed computing environments to create a parallel infrastructure that allows
for applications to be processed in a distributed manner. The goal is to create
an accessible virtual supercomputer by integrating distributed computers with
the use of open standards [1]. To this end, the Open Grid Services Architecture
(OGSA) [2], developed by Global Grid Forum (GGF), defines an architecture



for service-oriented Grid computing; GGF no longer exists, but the OGSA ar-
chitecture is still current. This architecture utilizes Web services standards such
as XML [3], SOAP [4] and WSDL [5].

Under the OGSA, computational and storage resources are exposed as an
extensible set of networked services that can be aggregated to create higher-
function applications. These Grid services, which are sometimes transient, ad-
here to a set of OGSA-defined conventions for creation, lifetime management,
discovery and change management [6]. Aligned with these conventions is the
Web Services Resource Framework (WSRF). WSRF is a set of specifications
that are defined in terms of existing Web services technologies, for modeling and
management of stateful resources. The specification defines a set of interfaces
that Grid services may implement. These interfaces which address issues like
dynamic service creation, lifetime management, notification, and manageability,
allow applications to interact with Grid services in standard and interoperable
ways [7].

Key to the realization of the benefits of Grid computing is the ability to
integrate basic services to create higher-level applications. We argue these higher-
level applications will provide the right level of abstraction for the non-computer
scientists. Thus, allowing them to concentrate on their domain specific work
instead of the technical issues of integrating tools. Workflow languages permit
such aggregation of services. With such languages, higher-level application can
be modeled as graphs where the nodes represent tasks while the edges represent
inter-task dependencies, data flow or flow control. Tasks may be performed by
basic services. The Business Process Execution Language (BPEL) [8] has become
the leading language for the aggregation of Web services. In this paper, we
share our experience in using BPEL to compose WSRF-based Grid services to
create a bioinformatics application for protein sequence matching. We show how
BPEL can be used to interact with WSRF-based services that implement the
factory /instance pattern [9].

The rest of this paper is structured as follows. Section 3 covers WSRF and
some of its component specifications. Section 4 provides a brief overview of ser-
vice orchestration and BPEL. Section 5 presents the bioinformatics application
and Section 6 shows how BPEL is used to integrate Grid services to create
the application. Section 7 covers the execution environment . Sections 8 and 9
provide some related work and conclusion, respectively.

2 Background on Web Services

A Web service is a program delivered over the Internet that provides a service
described in the Web Service Description Language (WSDL) [5] and communi-
cates with other programs, typically through SOAP messages [4]. Web services
provide the desired abstraction uniformity that is needed to bridge applications
regardless of the heterogeneity of platforms and implementation languages. They
provide a middleware layer that is relatively lightweight and have neither the ob-
ject model nor programming language restrictions imposed by other traditional
middleware systems. WSDL and SOAP are both independent of specific plat-
forms, programming languages, and middleware technologies. Moreover, SOAP



leverages the optional use of the HT'TP protocol, which can bypass firewalls,
thereby enabling Internet-wide application integration.

Web services, which are typically used to represent reusable business func-
tions (e.g., flight reservation), can be the building blocks of more complex busi-
ness processes. Although complex business processes can be developed in general-
purpose languages such as Java and C++, such languages do not provide high-
level constructs to readily define workflow processes that represent composite
Web services. Business Process Execution Language (BPEL) is a high-level work-
flow language that can be used to create coarse-grained business processes that
constitute a number of related business functions [8,10, 11]. By representing a
workflow that coordinates activities among other Web services, BPEL allows for
the creation of coarse-grained Web services by wiring together activities that
can invoke other Web services, manipulate data and handle exceptions. BPEL
and Web services make it possible for organizations to deploy flexible Service
Oriented Applications (SOA) [12,13]. SOA-based integration permits the dis-
covery and use of existing resources and thereby reducing the cost and speed
with which applications can be developed.

3 Web Services Resource Framework

In 2003, the Global Grid Forum, a working group for the standardization of Grid
computing, released the specification for the Open Grid Services Infrastructure
(OGSI). As of 2006, GGF was merged with the Enterprise Grid Alliance to form
the Open Grid Forum - a global standarization entity for both industrial and
academic grid computing. OGSI is a set of conventions and extensions on the
use of Web Service Definition Language (WSDL) and XML Schema to enable
the modeling and management of stateful Web services. The ultimate goal of
the specification is to encourage openness of the Grid infrastructure by align-
ing the Grid computing model with the emerging Web services architecture.
The OGSI specification addresses issues concerning creation and management
of the lifetime of instances of services, declaration and inspection of service state
data, notification of service state change and standardiztion of service invocation
faults.

In 2004, the Organization for the Advancement of Structured Information
Standards (OASIS) refactored the OGSI specification into the Web Services Re-
source Framework (WSRF). This framework standardizes the concept of Web
Services Resource (WS-Resource) [14], which is, the association of a state com-
ponent with a Web service. This association permits, through standardized in-
terfaces, the manipulation of the named typed state component as part of the
execution of the Web service. This creates the impression of statefulness of that
Web service. The stateful component is seen as implicit input in the execution
message exchange of the associated Web service (implied resource pattern). The
term pattern is used because the relationship between the Web service and the
stateful resource is defined using a set of conventions on existing Web services
technologies [14].

WSRF addresses some of the criticisms [15] of OGSI such as; the specification
was too monolithic and did not allow for flexible incremental adoption and exten-



Specification Description
W S-BaseFauls Defnes a setoffaulktypes
W S-RenewabEReferences | Defnesm eans Prrenewalofnvald references
W S-ResourceProperties Defnes the representation of the properties ofa statefulresource
W S-ResourceLifeCyck Defines m eans forresource creation and destruction
W S-Notification Defnes m echanim s oreventsubscrption and notificaton
W S-ServiceG roup Defnes prin ives form anagihg colectons ofservices

Fig. 1. WSRF component specifications.

sions to WSDL 1.1. Also, the and non-standard use of XML schema meant that
OGSI did not work well with existing Web services and XML tooling. OGSI was
seen as too object-oriented by coupling the service and the stateful resource it
acts upon as one entity. WSRF maintains all the functions of OGSI but incorpo-
rates some existing Web services technologies. WSRF partitions its functionality
into distinct component specifications, namely, WS-RenewableReferences, WS-
ResourceProperties, WS-ResourceLifeCycle, WS-Notification, WS-ServiceGroup
and WS-BaseFaults. With this separation, developers can now choose which of
the specifications to use. Figure 1 contains a brief description of the specifica-
tions. WSRF now supercedes the initial OGSI specification, thereby rendering
it obsolete. Figure 2 depicts the relationship between the Web services tech-
nologies, OGSI and the WSRF specifications. The WSRF leverages the other
specifications in the stack.

W SRF

OGSI

Fig. 2. The relationship between WSRF, OGSI and Web services technologies.

An instance of a stateful resource may be created by the use of a WS-Resource
factory. This factory is any Web service capable of instantiating the stateful com-
ponent. The factory implies a use pattern that may be implemented in several
Web service operations. To instantiate a stateful resource, the Web service has
to create a new stateful resource, assign an identity to that resource and create
the association between the resource and its Web service. The factory returns an
endpoint reference, which contains the identifier that refers to the new stateful
resource.

A thorough description of the component specifications of WSRF is beyond
the scope of this paper. However, a brief overview of WS-ResourceProperties and
WS-Addressing helps to provide context for the material that follows.



3.1 Web Services Resource Properties

Resource properties refer to the individual components of a Web service state.
This state is described in a WS-Resource properties document. Each resource
property is represented as an XML element in this document. The WS-Resource-
Properties specification standardizes the way properties of a resource can be
defined as part of a Web service interface [14]. It also defines mechanisms for
querying and modifying those resource properties through Web service inter-
faces. When defining the interface to a Web service, the portType component,
which describes a set of operations and messages of a service (WSDL 1.1), can
be associated with at most one resource property document, any Web service
that implements this portType is therefore associated with the stateful resource
defined by the resource property document [14]. Service users may determine
the resource type and ways to access or modify its properties by retrieving the
WSDL definition of the associated Web service.

3.2 Web Services Addressing

The Web services Addressing (WS-Addressing) [16] specification standardizes
the endpoint reference construct. The specification was designed to provide an
interoperable and transport-neutral way of encoding addressing information.
Here, transport refers to the transport layer of the network reference model. This
enables messaging systems to support message transmission through networks.
WS-Addressing defines two constructs to convey the necessary information, they
are: endpoint reference and message information header.

Endpoint Reference. The identifier for a stateful resource may be dynam-
ically associated with a Web service during message exchange execution. This
dynamic association eliminates the need to know the identity and location of
the resource encapsulated by the Web service. The identifier is encoded in an
Endpoint Reference (EPR) and is used to address a target WS-Resource. An
Endpoint Reference [16] is an XML structure that encapsulates the information
needed to route messages to their destination Web service. This Endpoint Ref-
erences may be returned by the factory that creates a new WS-Resource and
may contain, in addition to the address, other metadata such as reference prop-
erties. It is within the reference properties that the key for identifying a resource
instance is encapsulated. Figure 3 shows a WS-Addressing endpoint reference
as used within the conventions of WS-Resource. The endpoint reference con-
tains two components: (1) The Address component encapsulates the network
transport-specific address of the Web service; (2) the ReferenceProperties com-
ponent contains a stateful resource identifier.

Message Information Header. Message information headers carry end-to-
end message characteristics including addressing for source and destination end-
points as well as message identity [14]. A request message directed to a service us-
ing an endpoint reference must include the stateful resource identifier. Since WS-
Addressing specifies that ReferenceProperties elements must appear as SOAP



<EndpointReference>
<Address>http://host/wsrf/Service</Address>
<ReferenceProperties>
<ResourceKey>8807d620</ResourceKey>
</ReferenceProperties>
</EndpointReference>

Fig. 3. A WS-Resource-qualified Endpoint Reference.

header elements in the message, the stateful resource identifier is mapped to this
message information header. Figure 4 illustrates the use of a SOAP header to
propagate the stateful resource identifier. The target Web service will extract
this identifier from the SOAP message and use it to locate the stateful resource
needed for the execution of the request. The <Action> element of the header
identifies the verb of the message.

<Envelope>
<Header>
<MessageID>...</MessageID>
<To>http://host/wsrf/Service</To>
<ResourceKey>8807d620</ResourceKey>
<Action>...</Action>
<From>...</From>
</Header>
<Body>
</Body>
</Envelope>

Fig. 4. A SOAP request message carrying a resource identifier in its information header.
4 Service Orchestration

Service-Oriented Architecture implies that distributed software services can be
loosely integrated through clearly defined interfaces. This integration is often
achieved through service orchestration or choreography [17]. In service orches-
tration, integration is achieved through a central application. This application
(usually an executable workflow) models the interaction between the integrated
services. The application is aware of the interfaces of the services and controls
their execution order and message exchange. In service choreography, there may
not exist a central controlling process, rather interacting services are aware of
each other and each service knows of its participation in the message exchanges
of the interaction. Figure 5 illustrates the difference between orchestration and
choreography. To create service orchestration, a workflow language such as Busi-
ness Process Execution Language (BPEL) is often used.

4.1 Business Process Execution Language (BPEL)

BPEL has become the leading standard for Web service orchestration. With
BPEL, Web services can be integrated, using some XML-grammer, to create



4. o ‘—.
Sewie —@ — — Sewie
0 rchestatbn

applcaton

(a) Service Orchestration.

Sewite

Sewte —@

.* Sewte

Sewie

(b) Service Choreography.

Legend:
[‘— Sewte hterface =~ <+—» Message fow }

Fig. 5. Comparing orchestration and choreography.

a higher-level application (business process). The XML-grammer that defines
a BPEL process is interpreted and executed by an orchestration engine which
exposes the process as a Web service. BPEL, which is built on XML-Schema,
WSDL and XPath, weaves together basic and structured activities to create
the logic of the process. BPEL provides many constructs for the management
of process activities, including loops, conditional branching, fault handling and
event handling (such as timeout). It allows for activities to execute sequentially
or in pararrel.

A basic activity is a primitive BPEL activity that performs some atomic ac-
tion that interacts with other Web services outside of the BPEL process. These
activities include the invoke activity that performs an operation on an exter-
nal Web service partner. Some others are, the receive which waits for external
input from a partner and the reply activity which send back a message to the
partner that invoked the receive operation. Structured activities are those activ-
ities that derived from a combination of several activities. Structured activities
aim to specify the order in which the combined activities execute. They pro-
vide support for asynchronous interactions which is important for efficiency and
scalability. For instance, activities that are meant to execute concurrently or se-
quentially are enclosed in flow and sequence tags, respectively. Other structure
activities include switch for conditional branching, pick for alternative choices
and a while loop construct. Structured activities can be nested and the execution
order between blocks of activities can be defined with the use of links.



BPEL processes can manage exceptions generated from service invocations.
Faults can be generated externally by invoked Web service partners or internally
within the process. Faults are caught with code defined inside fault handlers.
In addition, BPEL activities can be grouped into a single transaction with the
scope tag. The scope construct provides a context for a subset of activities. It can
contain fault and event handler for activities nested within it. The scope allows
the activities enclosed within it to be managed as a logical unit. With the need
for scientists to create application that integrate multiple Grids service and the
alignment of the Grid service paradigm with Web services technologies, BPEL
is now poised to play an important role in the orchestration of Grid services.

5 WSRF Services for Bioinformatics

In Bioinformatics, one of the most critical jobs is Computational Biology, which
is, the analysis of biological data. In this sections, we use a Grid application that
we developed for computational biology as the case study to demonstrate the
use of BPEL in the orchestration of WSRF-based Grid services. This applica-
tion attempts to match protein sequences [18]. This matching of sequences can
be computationally intensive depending on the size of the sequences processed.
Figure 6 shows the high-level architecture of the application. Below, we explain
some of the components of this architecture.

BPEL W SRF OGSADAICore

Rehtbna
Database

Data Sewte [
\\'_

W orkfbw

Fig. 6. The high-level architecture of the application.

OGSA-DAI. Biological data is stored in a variety of formats such as flat
files, relational databases and XML repositories. Some of these data repositories
are platform and/or language dependent, which makes it difficult to integrate
in new environments. So, there is a need to seamlessly access these disparate
sources of information and integrate them into the Grid for further processing.
OGSA-DAT [19] is middleware that facilitates the access and integration of data
from separate sources in a Grid computing environment. OGSA-DAI makes data
sources accessible via Web services (Data services).



GYM. GYM is a biological application for processing protein data sequences.
Here, GYM is used to detect Helix-Turn-Helix (HTH) Motifs [18] in protein
sequences. Proteins with HTH motifs are usually responsible for binding with
DNA [18]. The GYM program is a legacy application written in C. It takes as
input, a sequence of protein data. GYM instances are run on Grid nodes to
process the sequences available from the sources.

GUSQuery Service. This is a WS-Resource. The resource in this case is the
protein sequence data obtained from an OGSA-DAI data service. This service
contains a search method which takes as input a range of sequences and the
location of the data service through which to get those sequences. In adherence
to the WSRF' specification, this service is accompanied by a factory service.
The factory service, called GUSQueryFactory, contains a create method which
creates an instance of the GUSQuery Service. The factory service returns an
endpoint reference which identifies the created instance.

GYM Service. This is also a WS-Resource. It contains a method which takes
as input a range of protein sequence data. This data is then processed locally
using a GYM application. The result from the GYM application is stored in a
database. This service also has a factory service called GymFactory.

Workflow. This BPEL process weaves together the interaction between the
GUSQuery service and the GYM service. This executable workflow, which is
exposed as a Web service, is also responsible for creating the instances of those
services through their respective factory services. It uses the endpoint references
returned by those factories to identify the specific service instances. It passes the
protein sequence data from the GUSQuery service to the GYM service. Figure 7
is a sequence diagram that shows the interaction between the workflow and the
services. The first step is to use the GUSQueryFactory to create an instance
of GUSQueryService, this operation returns the endpoint reference identifier
for the instance. The GUSQueryService instance is then invoked to retrieve a
set of protein sequences. These sequences are then sent to the GymService for
processing (step 4) , just after an instance of that service is created (step 3).
The last step retrieves the result of that sequence processing.

As stated in Section 4, BPEL is an orchestration language and which means,
it has a centralized architecture. Thus, all message and data exchange between
collaborating services go through the BPEL process. Although this presents a
limitation, especially in a Grid environment where it might be necessary to
move large amounts of data, it is possible to implement a BPEL process that
combines service orchestration and choreography. To achieve this hybrid, rather
than moving large amounts of data through the BPEL process, the reference to
the data is passed. The services in the collaboration can then transfer the data
amongst themselves using applications such as GridFTP.



10

’ :GUSQueIVFactDIVH :GUSQuervSeNjce‘ ’ :Gym Factory ‘ ’ :Gym Serwice
|

|
1 createR esource () EndpontR eferencel

]

2 searchSequence () sequenceData

3 createR esource () EndpohtR eference

4 processSequence ()

:zesoumerpert;}'

5 getR esourceP roperty ()

|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
r
I
I,
h
I
I
I
I
L
I
I
1
b
I
I
I
I
I
i
I
I
I,
h]
I
I
|

Fig. 7. The sequence diagram for workflow.

6 WSRF with BPEL

To fully immerse BPEL as part of any Grid environment, it is necessary not
only to use BPEL to integrate WSRF-based Grid services but also to expose
the BPEL process itself as a WS-Resource. Although trying to expose a BPEL
process as a WS-Resource does present some obstacles, since WSRF is not con-
sidered in the current BPEL specification, this can be achieved through language
extensions and mediators [20] [21]. In this paper, BPEL is used solely for the
integration of WSRF-based Grid services.

In this section, we show how the interaction with the WSRF-based services
(shown in figure 7) is achieved in BPEL. The details about the definition of the
services themselves, is outside the scope of this paper. Where necessary, some
code have been simplified for brevity.

6.1 Partner links

The partner links define the different services that interact with the BPEL
process. The <partnerLinks> section in the code listing below shows the four
services that interact with the workflow.

<partnerLinks>

<partnerLink name="gym"
partnerLinkType="GymPortTypeLink"
partnerRole="GymPortTypeProvider"/>

<partnerLink name="GusFactory"
partnerLinkType="GusFactoryPortTypeLink"
partnerRole="GusFactoryPortTypeProvider"/>



11

<partnerLink name="gus"
partnerLinkType="GUSQueryPortTypeLink"
partnerRole="GUSQueryPortTypeProvider"/>
<partnerLink name="GymFactory"
partnerLinkType="GymFactoryPortTypeLink"
partnerRole="GymFactoryPortTypeProvider"/>
</partnerLinks>

The partnerLinks here correspond to the GYM service (gym), as well as
the factory for that service (GymFactory), the GUSQuery service (gus) and its
factory service (GusFactory). The partner link type and a role name in each
partner link identifies the functionality that must be provided by the by the
partner services, that is, the interface (portType) that the partners need to
implement [22].

6.2 Variables

The code below shows some of the message variables used by the BPEL process.
The variables are defined in terms of WSDL message types, XML Schema simple
types, or XML Schema elements. These variables are used in messages exchanged
with partner services.

<variables>

<!-- some variables GUSQuery service & factory -->

<variable messageType="ns4:CreateResourceRequest"
name="CreateResourceRequest"/>

<variable messageType="ns4:CreateResourceResponse"
name=“CreateResourceResponse"/>

<variable messageType='"ns2:searchSequenceRequest"
name="gsuRequest"/>

<variable messageType="ns2:searchSequenceResponse"
name="gusResponse"/>

<!-- some variables GYM service & factory -->

<variable messageType="nsb5:GetResourcePropertyRequest"
name="GetResourcePropertyRequest"/>

<variable messageType="ns5:GetResourcePropertyResponse"
name="GetResourcePropertyResponse"/>

<!-- variable for endpoint reference -->

<variable element="wsa:EndpointReference"
name="DynamicEndpointRef"/>

</variables>

6.3 Creating a Web service instance

Creating a new Web service resource instance involves making a call to the cre-
ateResource operation of designated factory service. This is achieved by using
BPEL’s service invocation mechanism. The <invoke> construct allows a BPEL
process to invoke a one-way or request-response operation on a portType (inter—
face) offered by a partner service [22]. The code listing below shows the invoca-
tion to the createResource operation of the GUSQuery factory service.

<invoke
name="InvokeGusFactory"
partnerLink="GusFactory"
portType="GusFactoryPortType">



12

operation="createResource"

inputVariable="CreateResourceRequest"

outputVariable="CreateResourceResponse"
</invoke>

The invoke activity which makes a synchronous call to the factory service,
contains the portType of the operation as well as the inputVariable and output-
Variable variables. If the invocation is successful, the outputVariable will con-
tain the endpoint reference of the created instance. Below is an example SOAP
message returned after a successful invocation to the factory service.

<soapenv:Envelope>

<soapenv:Body>
<createResourceResponse xmlns="...">
<wsa:EndpointReference>

<wsa:Address>
http://.../usrf/services/GUSQueryService

</wsa:Address>

<wsa:ReferenceProperties>
<ns1:GUSQueryResourceKey xmlns:nsl="...">

8807d620-acb3-11db-9abe-b9e88£054119

</ns1:GUSQueryResourceKey>

</wsa:ReferenceProperties>

</wsa:EndpointReference>
</createResourceResponse>
</soapenv:Body>
</soapenv:Envelope>

In this message can be seen the EndpointReference element which contains the
Address and resource key (GUSQueryResourceKey) to the created service instance.

6.4 Invoking the Web service instance

Since the identifier of a WS-Resource instance is obtained at runtime, any mes-
sage to this instance must contain the resource identifier in its SOAP header
(as described in Section 3.2). Note that, although the instance of the service is
only known at runtime, the service would have been declared as a partner at
development time (see Section 6.1). The BPEL specification allows for the actual
service endpoint of a partner to be dynamically defined within the process. The
specification however, does not make provisions for how dynamically obtained
information such as resource identifiers can be define for those endpoints. This
type of information needs to be mapped to the headers of the SOAP messages
for the target endpoint. Because the BPEL specification is deficient in this re-
gard, the method mapping desired information to SOAP headers depends on the
specific implementation of the BPEL execution engine. The method me describe
below is suited for the ActiveBPEL Engine (see Section 7.2)

To dynamically associate an endpoint reference to a service, the WS-Add-
ressing endpoint reference [16] is used to represent the dynamic data required to
describe a partner service endpoint [22]. To achieve the association of a partner
with its service endpoint, an endpoint reference has to be assigned to the declared
partner link within the process. As shown below, we use the copy operation



13

of an assignment activity to copy literally an endpoint reference to a variable
(DynamicEndpointRef).
<copy>
<from>
<wsa:EndpointReference xmlns:s="...">
<wsa:Address/>
<wsa:ServiceName PortName="GUSQueryPortType">
s:GUSQueryService
</wsa:ServiceName>
<wsa:ReferenceProperties>
<!--Elements to be mapped to the SOAP Header-->
<wsa:Action/>
<wsa:To/>
<wsa:From/>
<ns2:GUSQueryResourceKey/>
</wsa:ReferenceProperties>
</wsa:EndpointReference>
</from>
<to variable="DynamicEndpointRef"/>
</copy>

This endpoint reference contains an Address element that will hold the service
endpoint address. The ReferenceProperties of the endpoint reference contains
some WS-Addressing message information header elements and a GUSQuery-
ResourceKey element. The GUSQueryResourceKey element will hold the resource
identifier for the WS-Resource. Values for the endpoint reference will be as-
signed at run time. The message information header elements and the GUSQuery-
ResourceKey will be mapped, by the BPEL engine to the invocation SOAP mes-
sage for the partner Web service, which in this case is GUSQueryService.

The WS-Resource identifier information required for the endpoint reference is
copied from the reply message of their respective factory services. The copy oper-
ation below copies the service endpoint address from the factory response mes-
sage (CreateResourceResponse) to the endpoint variable (DynamicEndpointRef).
The query attribute of the <from> and <to> clauses are XPath [23] queries. XPath
queries are used to select a field within a source or target variable part.

<copy>
<from variable="CreateResourceResponse"
part="response"
query="/nsé4:createResourceResponse
/wsa:EndpointReference/wsa:Address"/>
<to variable="DynamicEndpointRef"
query="/wsa:EndpointReference
/wsa:ReferenceProperties/wsa:To"/>
</copy>

A similar mechanism is used to assign the service endpoint address to the
<wsa:Address> property of the endpoint reference variable. The BPEL engine
needs this address to determine the destination of the invocation message for
the service. The <wsa:To> component of the message information header is used
by the service to determine the endpoint of the required service instance. Here,
we use the same address returned by the factory because for this application,
the address of a service and its instance are the same.

<C0py>



14

<from variable="CreateResourceResponse"
part="response"
query="/nsé4:createResourceResponse
/wsa:EndpointReference/wsa:Address"/>
<to variable="DynamicEndpointRef"
query="/wsa:EndpointReference
/wsa:Address"/>
</copy>

The name of the operation to be invoked on the WS-Resource instance needs
to be assigned to the Action part of the SOAP header. To achieve this, an
XPath expression to write the name as a string to the endpoint reference vari-
able. An XPath expression, which is specified in an expression attribute in the
<from> clause, is used to indicate a value to be stored in a variable. The string
that represents the operation, is in the for of a URI that includes the target
namespace of the WSDL document for the WS-Resource and the associated
portType. Thus in the listing below, http://GUSQueryService_instance is the
namespace, GUSQueryPortType is the portType and searchSequence is the opera-
tion.

<copy>
<from expression="string(’
http://GUSQueryService_instance
/GUSQueryPortType/searchSequence’)"/>
<to variable="DynamicEndpointRef"
query="/wsa:EndpointReference
/usa:ReferenceProperties/wsa:Action" />
</copy>

The listing below shows how we use the copy operation and XPath queries to
copy the resource instance key (GUSQueryResourceKey) from the factory response
message to the endpoint reference variable.

<copy>
<from variable="CreateResourceResponse" part="response"
query="/ns4:createResourceResponse
/wsa:EndpointReference/wsa:ReferenceProperties
/ns2:GUSQueryResourceKey" />
<to variable="DynamicEndpointRef"
query="/wsa:EndpointReference/wsa:ReferenceProperties
/ns2:GUSQueryResourceKey" />
</copy>

The <wsa:From> property of the message information header identifies the
source of the meassage, this property can be set with the WS-Addressing ” anony-
mous” endpoint URI [16]. This anonymous endpoint URI can be used because
the invocation to the resource instance is synchronous in this case and the un-
derlying message layer takes care of delivering replies to the source.

<copy>
<from>

<From xmlns="...">

<Address>
http://schemas.xmlsoap.org/ws/2004/03
/addressing/role/anonymous

</Address>

</From>

</from>



15

<to variable="DynamicEndpointRef"
query="/wsa:EndpointReference
/wsa:ReferenceProperties/wsa:From"/>
</copy>

After assigning values to all the necessary parts of the endpoint reference
variable, an association is now made with this variable and the desired partner
link. As shown below, a copy operation is used to copy the endpoint reference
variable (DynamicEndpointRef) to the predefined partner link. An invocation can
now be made to the Web service (WS-Resource) partner (GUSQuery service).
The information carried in the SOAP message header of the invocation is used
to identify the appropriate instance of this service.

<copy>
<from variable="DynamicEndpointRef"/>
<to partnerLink="gus"/>

</copy>

6.5 Accessing resource properties

The WS-ResourceProperties specification includes a set of port types for query-
ing and modifying the state of a WS-Resource. The Gym service (Section 5)
implements the GetResourceProperty port type of this specification. We use this
port type and its operation (also called GetResourceProperty) to access the result
from the Gym application (Section 5). Prior to invoking the GetResourceProp-
erty operation, some initialization needs to be made to the variable of its input
message. This initialization includes the name of the resource property to which
we want to retrieve the value. In our case, this resource property is called result.
The listing below shows how we initialize the GetResourcePropertyRequest in the
BPEL process. The <from> clause includes (as attributes) the target namespace
of the WSDL documents that contain the definitions for the GetResourceProp-
erty port type and the result resource property.

<copy>
<from>
<GetResourceProperty
xmlns="http://docs.oasis-open.org/wsrf/2004/06
/wsrf-WS—ResourceProperties-l.2-draft-01.xsd“
xmlns:ns3="http://GymService_instance">
ns3:result
</GetResourceProperty>
</from>
<to variable="GetResourcePropertyRequest"
part="GetResourcePropertyRequest"/>
</copy>

The WS-ResourceProperties specification also includes the GetMultipleRe-
sourceProperty port type for retrieving the values of multiple resource properties.
To make an invocation the operation of this port type, the variable message ini-
tialization must include the list of all the resources properties, each encapsulated
within a </ResourceProperty> element.



16

<copy>
<from>
<GetMultipleResourceProperty

xmlns="http://docs.oasis-open.org/wsrf/2004/06
/wsrf-WS-ResourceProperties-1.2-draft-01.xsd">

<ResourceProperty
xmlns:ns3="http://GymService_instance">

ns3:result
</ResourceProperty>
<ResourceProperty xmlns:nsil="...">

</ResourceProperty>
</GetMultipleResourceProperty>
</from>
<to .../>
</copy>

Because we are trying to access the resource properties of a WS-Resource
instance, assignments need to be made to all parts of the message header neces-
sary for identifying the instance. The way to do this is described in Section 6.4,
the only difference now is in the URI that specifies the verb of the invocation
message.

<copy>
<from expression="string(’http://docs.oasis-open.org
/wsrf/2004/06/wsrf-WS-ResourceProperties
/GetResourceProperty’)"/>
<to variable="DynamicEndpointRef"
query="/wsa:EndpointReference
/wsa:ReferenceProperties/wsa:Action"/>
</copy>

Although we do not implement all the WSRF port types, the examples shown
above is sufficient to enable the orchestration of WSRF-based services that im-
plement the factory/instance pattern. In this section, we showed how the in-
teraction with the WSRF-based services (shown in figure 7) is achieved using
BPEL as the composition language.

7 Execution Environment

The Grid service that make up our application are deployed under the Globus
Toolkit version 4 [24]. The BPEL engine we use is AcitveBpel version 3.0 [25].
In the rest of this section, we present a brief overview of these tools.

7.1 The Globus toolkit

The Globus Toolkit is an open source toolkit for building Grids. Version 4.0 [24]
of this toolkit implements the WSRF specification. The software is a set of com-
ponents that can be used to develop Grid applications. The toolkit includes
software services and libraries that address issues like resource monitoring, dis-
covery, management, security, data management, fault detection, etc. It allows
users to access remote resources as if they were located locally. Globus Toolkit
has become the de facto standard for building Grid solutions.



17

7.2 The ActiveBPEL engine

The ActiveBPEL engine [25] is a Java-based open source implementation of a
BPEL engine. It reads BPEL process definitions (and WSDL files) and exposed
the BPEL process as a Web service. Incoming messages may trigger start activ-
ities which causes the engine to create new instances of the process. The engine
manages persistence, queues, alarms, and other execution details on behalf of
the process. The version of ActiveBPEL engine we used runs under an Apache
Tomcat servlet container.

8 Related Work

Duscher [26] present the architecture of an execution environment for mathemat-
ical services using Web service technologies. WSRF is used for the architecture
and BPEL is used to represent the workflow that specifies the interactions with
the mathematical services. The execution environment comprises a mathemati-
cal service (GAPService) and a BPEL engine. The GAPService implements both
a service and factory interface. A part of the GAPService manages the lifecycle
of the instances. This work differs from ours because, although the creation of
service instances is done through the BPEL workflow, the discovery and man-
agement of those instances is not. Also, their Web services do no execute as part
of a Grid environment.

Various works [27,28] have been done to address the issue of using BPEL
to orchestrate Grid services. However, these works do not cover WSRF-based
Grid services and the implied resource pattern. Others [20,21], discuss the issues
involved in exposing BPEL processes as WSRF-based Grid services.

9 Conclusion

In this paper, we discussed and explained how BPEL can be used as a language
for integrating WSRF-based Grid services. In a case study, we demonstrated how
some WSRF-based Grid services can be integrated to create a Bioinformatics
application that is used to detect Helix-Turn-Helix motifs in protein sequences.
The integrated WSRF services implement the factory pattern [9]. We showed
how BPEL can be used to create, discover and manage WS-Resource instances.
The centralized nature of data movement in BPEL presents a problem for high-
performance computing, however, this limitation can be remedied by using tech-
niques that enable the direct transfer of data between partner services. Also,
the BPEL specification does not make provisions for how dynamically obtained
information such as resource identifiers, usernames and passwords can be speci-
fied within SOAP message headers. The method of achieving this is left open to
the implementation of the various BPEL engines. Therefore, there is a need for
standardization in this regards for BPEL process to remain portable and assume
its place as the language for orchestrating Grid services.



18

References

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

Foster, 1., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable
virtual organizations. Lecture Notes in Computer Science 2150 (2001)

The Open Grid Services Architecture, http://www.globus.org/ogsa/.
Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.: Extensible
Markup Language (XML) 1.0 (Third Edition). W3C. (2004)
M. Gudgin et al.: SOAP Version 1.2. W3C. 1.2 edn. (2003)
R. Chinnici et al.: Web Services Description Language (WSDL) Version 2.0. W3C.
2.0 edn. (2004)
Foster, 1., Kesselman, C., Nick, J.M., Tuecke, S.: Grid services for distributed
system integration. Computer 35(6) (2002) 3746
Web Services Resource Framework, http://www.globus.org/wsrf/.
Weerawarana, S., Curbera, F.: Business process with BPEL4WS: Understanding.
Online article (2002)
Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Se-
ries. Addison-Wesley Publishing Company, New York, NY (1995)
Sherman, D.: Business flows with BPEL4AWS. Online article (2005) URL: http:
//xml.sys-con.com/read/39780.htm.
Leymann, F.,; Roller, D., Schmidt, M.T.: Web services and business process man-
agement. IBM Systems Journal 41(2) (2002)
Kreger, H.: Web Services Conceptual Architecture (WSCA 1.0). IBM Soft-
ware Group. (2001) Available at URL: http://www-306.ibm.com/software/
solutions/webservices/pdf/WSCA.pdf.
D. Booth et al. : Web Services Architecture. W3C. (2004)
Foster, 1., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D., Leymann,
F., Nally, M., Sedukhin, I., Snelling, D., Storey, T., Vambenepe, W., Weerawaran,
S.: Modeling stateful resources with Web services. (2004)
Czajkowski, K., Ferguson, D., Foster, 1., Frey, J., Graham, S., Maguire, T., Snelling,
D., Tuecke, S.: From OGSI to WS-Resource framework: Refactoring and evolution.
(2004)

Web Services Addressing (WS-Addressing), http://www.w3.org/Submission/
ws-addressing/.
Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10)
(2003) 44-52
Narasimhan, G., Bu, C., Gao, Y., Wang, X., Xu, N., Mathee, K.: Mining for motifs
in protein sequences. Journal of Computational Biology 9(5) (2002) 707-720

The OGSA-DAI Project, http://www.ogsadai.org.uk/.
Leymann, F.: Choreography for the grid: towards fitting BPEL to the resource
framework: Research articles. Concurr. Comput. : Pract. Exper. 18(10) (2006)
1201-1217
Slominski, A.: On using BPEL extensibility to implement OGSI and WSRF grid
workflows. In: GGF10 Workshop on Workflow in Grid Systems, Berlin, Germany
(2004)
Andrews, T., Curbers, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thattee, S., Trickovic, I., Weerawarana, S.: Business
process execution language for web services version 1.1. (2003)
XML Path Language (XPath), http://www.w3.org/TR /xpath.

The Globus Toolkit, version 4, http://wuw.globus.org.



25.
26.

27.

28.

19

ActiveBPEL 3.0, http://www.activebpel.org.

Duscher, A.: An execution environment for mathematical services based on WSRF
and BPEL. Technical report, Research Institute for Symbolic Computation, Jo-
hannes Kepler University, Linz, Austria (2005)

Kuo-Ming Chao, Muhammad Younas, N.G.: BPEL4WS-based coordination of grid
services in cooperative design. Computers in Industry 57 (2006) 778-786
Emmerich, W., Butchart, B., Chen, L., Wassermann, B., Price, S.L.: Grid service
orchestration using the business process execution language BPEL. Journal of Grid
Computing 3(3-4) (2005) 283-304



