
Transparent Shaping of Existing Software to Support
Pervasive and Autonomic Computing

S. Masoud Sadjadi
School of Computer Science

Florida International University
Miami, Florida 33199

sadjadi@cs.fiu.edu

Philip K. McKinley
Dept. of Computer Science
Michigan State University

East Lansing, Michigan 48824

mckinley@cse.msu.edu

Betty H.C. Cheng
Dept. of Computer Science
Michigan State University

East Lansing, Michigan 48824

chengb@cse.msu.edu

ABSTRACT
The need for adaptability in software is growing, driven in part by
the emergence of pervasive and autonomic computing. In many
cases, it is desirable to enhance existing programs with adaptive
behavior, enabling them to execute effectively in dynamic environ-
ments. In this paper, we propose a general programming model
called transparent shaping to enable dynamic adaptation in existing
programs. We describe an approach to implementing transparent
shaping that combines four key software development techniques:
aspect-oriented programming to realize separation of concerns at
development time, behavioral reflection to support software recon-
figuration at run time, component-based design to facilitate inde-
pendent development and deployment of adaptive code, and adap-
tive middleware to encapsulate the adaptive functionality. After
presenting the general model, we discuss two specific realizations
of transparent shaping that we have developed and used to create
adaptable applications from existing programs.

Categories and Subject Descriptors
D.3.4 [PROGRAMMING LANGUAGES]: Processors—Code gen-
eration

General Terms
Design, languages, reliability.

Keywords
Dynamic adaptation, middleware, program families.

1. INTRODUCTION
A software application is adaptable if it can change its behav-

ior dynamically (at run time) in response to transient changes in
its execution environment or to permanent changes in its require-
ments. Recent interest in designing adaptable software is driven
in part by the emergence of pervasive computing and the demand

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEAS 2005, May 21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-039-6/05/0005 ...$5.00.

for autonomic computing [1]. Pervasive computing promises any-
where, any time access to data and computing resources with few
limitations and disruptions [2]. The need for adaptability in perva-
sive computing is particularly evident at the “wireless edge” of the
Internet, where software in mobile devices must balance conflicting
concerns such as quality-of-service (QoS) and energy consumption
in responding to variability of conditions (e.g., wireless network
loss rate). Autonomic computing [3] refers to self-managed, and
potentially self-healing, systems that require only high-level hu-
man guidance. Autonomic computing is critical to managing the
myriad of sensors and other small devices at the wireless edge, but
also in managing large-scale computing centers and protecting crit-
ical infrastructure (e.g., financial networks, transportation systems,
power grids) from hardware component failures, network outages,
and security attacks.

Developing and maintaining adaptable software are nontrivial
tasks. An adaptable application comprises functional code that
implements the business logic of the application and supports its
imperative behavior, and adaptive code that implements the adap-
tation logic of the application and supports its adaptive behavior.
The difficulty in developing and maintaining adaptable applications
is largely due to an inherent property of the adaptive code, that is,
the adaptive code tends to crosscut the functional code. Example
crosscutting concerns include QoS, mobility, fault tolerance, recov-
ery, security, self auditing, and energy consumption. Even more
challenging than developing new adaptable applications is enhanc-
ing existing applications, such that they execute effectively in new,
dynamic environments not envisioned during their design and de-
velopment. For example, many non-adaptive applications are being
ported to mobile computing environments, where they require dy-
namic adaptation.

This paper proposes a new programming model, called trans-
parent shaping, that supports the design and development of adapt-
able programs from existing programs without the need to modify
the existing programs’ source code directly. We argue that auto-
matic generation of an adaptable program from a non-adaptable
one is important to maintaining program integrity, not only because
it avoids errors introduced by manual changes, but because it pro-
vides traceability for the adaptations and enables the program to
return to its original behavior if necessary. Our approach to im-
plementing transparent shaping combines four key technologies:
aspect-oriented programming to enable separation of concerns at
development time, behavioral reflection to enable software recon-
figuration at run time, component-based design to enable indepen-
dent development and deployment of adaptive code, and adaptive
middleware to help insulate application code from adaptive func-
tionality. To demonstrate the effectiveness of this approach, we

99

1

describe two realizations of transparent shaping that we have de-
veloped and used to create adaptable applications.

The remainder of this paper is organized as follows. Section 2
discusses the four main components of our approach. Section 3
provides an overview of transparent shaping and describes its rela-
tionship to program families [4]. Sections 4 and 5, respectively, de-
scribe two realizations of transparent shaping; one is middleware-
based and the other is language-based. Section 6 discusses how
transparent shaping complements other research in adaptive soft-
ware. Section 7 presents conclusions and identifies several direc-
tions for future research.

2. BASIC ELEMENTS
Our approach to transparent shaping integrates four key tech-

nologies: separation of concerns, behavioral reflection, software
components, and middleware. In this section, we briefly review
each technology and its role in transparent shaping.

Separation of concerns [5] enables the separate development of
the functional code from the adaptive code of an application. This
separation simplifies development and maintenance, while promot-
ing software reuse. Moreover, since adaptation often involves cross-
cutting concerns, this separation also facilitates transparent shap-
ing. In our approach, we use aspect-oriented programming (AOP) [6,
7], an increasingly common approach to implementing separation
of concerns in software. While object-oriented programming in-
troduces abstractions to capture commonalities among classes in
an inheritance tree, crosscutting concerns are scattered among dif-
ferent classes, thus complicating the development and maintenance
of applications. Conversely, in AOP the code implementing such
crosscutting concerns, called aspects, is developed separately from
other parts of the system. Later, for example during compilation,
an aspect weaver can be used to weave different aspects of the pro-
gram together to form a program with new behavior. Predefined lo-
cations in the program where aspect code can be woven are called
pointcuts.

In traditional AOP, after compilation the aspects are tangled (via
weaving) with the functional code. To facilitate dynamic reconfig-
uration, transparent shaping needs a way to enable separation of
concerns to persist into run time. This separation can be accom-
plished using behavioral reflection [8], the second key technology
for transparent shaping. Behavioral reflection enables a system to
“open up” its implementation details at run time [9]. A reflective
system has a self representation that deals with the computational
aspects (implementation) of the system, and is causally connected
to the system. The self representation of a reflective system is real-
ized by metaobjects residing in the meta-level, which is separated
from the actual system represented by objects in the base level.
By incorporating crosscutting concerns associated with the system
as part of its self representation, the resulting code at run time is
not tangled and can be reconfigured dynamically. When combined
with AOP, behavioral reflection enables dynamic weaving of cross-
cutting concerns into an application at run time [10].

The third major technology that supports transparent shaping is
component-based design. Software components are software units
that can be independently developed, deployed, and composed by
third parties [11]. Well-defined interface specifications supported
in component-based design enable adaptive code to be developed
independently from the functional code, and potentially by differ-
ent parties, using the interface as a contract. Component-based de-
sign supports two types of composition. In static composition, a
developer can combine several components at compile time to pro-
duce an application. In dynamic composition, the developer can
add, remove, or reconfigure components within an application at

runtime. When combined with behavioral reflection, component-
based design enables a “plug-and-play” capability for adaptive code
to be incorporated with functional code at run time that facilitates
development and maintenance of adaptable software.

Finally, in many cases it is desirable to hide the adaptive be-
havior from the application using middleware. Traditionally, mid-
dleware is intended to mask the distribution of resources across
a network and hide differences among computing platforms and
networks [12]. As observed by several researchers [13], however,
middleware is also an ideal place to incorporate adaptive behav-
ior for many different crosscutting concerns. Adaptive middleware
enables dynamic reconfiguration of middleware services while an
application is running, adjusting the middleware behavior to envi-
ronmental changes dynamically. Our approach to transparent shap-
ing uses adaptive middleware in two ways. In the first, transparent
shaping adds adaptive behavior to a middleware platform already
supporting the application. In the second, transparent shaping is
used to weave adaptive middleware itself into an application.

3. GENERAL APPROACH
By generating adaptable programs from existing applications, trans-
parent shaping is intended to support the reuse of those applications
in environments whose characteristics were not necessarily antici-
pated during the original design and development. Therefore, the
challenge in transparent shaping is finding a way to produce adapt-
able programs that share the business logic of the original program
and differ only in the new adaptive behavior.

As illustrated in Figure 1, one way to formulate this problem
is using program families, a well-established concept in the soft-
ware engineering community. A program family [4] is a set of pro-
grams whose extensive commonalities justify the expensive effort
required to study and develop them as a whole, rather than individ-
ually. In short, transparent shaping can be viewed as producing a
family of adaptable programs from an existing non-adaptable pro-
gram. The adaptable program comprises the original program code
that remains fixed during program execution, and adaptive code
that can be replaced with other adaptive code dynamically. Replac-
ing one piece of adaptive code with another piece of adaptive code
converts an adaptable program into another adaptable program in
the corresponding family. This conversion is possible in this pro-
gramming model, because the adaptive code is not tangled with the
functional code. We use the term composer to refer to the entity
that performs this conversion. The composer might be a human –
a software developer or an administrator interacting with a running
program through a graphical user interface – or a piece of software
– a dynamic aspect weaver, a component loader, a runtime system,
or a metaobject.

Our approach to transparent shaping produces adaptable pro-
grams in two steps. In the first step, an adapt-ready program [14] is
produced at compile, startup, or load time using static transforma-
tion techniques. An adapt-ready program is a program whose be-
havior is initially equivalent to the original program, but which can
be adapted at run time by insertion or removal of adaptive code at
certain points in the execution path of the program, called sensitive
joinpoints. To support such operations, the first step of transparent
shaping weaves interceptors, referred to as hooks, at the sensitive
joinpoints, which may reside inside the program code itself, inside
its supporting middleware, or inside the system platform. Exam-
ple techniques for implementing hooks include aspects (compile
time), CORBA portable interceptors [15] (startup time), and byte-
code rewriting [16] (load time).

In the second step, executed at run time, the hooks in the adapt-
ready program are used by the composer to convert the adapt-ready

100

2

X0
(existing program)

X1
(adapt-ready program)

X4X3

X8

First Step:
at compile, startup, or load time

Second Step:
at run time

X working program reversible design decisiondesign decision

X2
(adapt-ready program)

X5 X7X6

X9

subfamily boundary

S1 S2

Figure 1: A transparent shaping design tree illustrating a family of adaptable programs produced from an existing program, which
is the root of this tree. Children of the root are adapt-ready programs. Other descendants are adaptable programs.

program into an adaptable program in the corresponding subfam-
ily, as executing conditions warrant. Adapt-ready programs derived
from the same existing program differ in their corresponding sen-
sitive joinpoints and hooks. We note that the available hooks in an
adapt-ready program limit its dynamic behavior. In other words,
each adapt-ready program can be converted to a limited number
of adaptable programs in the corresponding family. The adaptable
programs derived from an adapt-ready program form a subfamily
(e.g., S1 and S2 in Figure 1).

We use Figure 1 to describe a specific example. Consider an
existing distributed program (X0) originally developed for a wired
and secure network. To enable this program to run efficiently in a
mobile computing environment, the first step of transparent shap-
ing can be used to produce an adapt-ready version of this program
(X1), which has hooks intercepting all the remote interactions. At
run time, if the system detects a low quality wireless connection,
the composer can insert adaptive code for tolerating long periods
of disconnection into the adapt-ready program (producing X4 from
X1). Later, if the user enters an insecure wireless network, the
composer can insert adaptive code for encryption/decryption of the
remote interactions into the program (producing X8 from X4). Fi-
nally, when the user returns to an area with a secure and reliable
wireless connection, the composer can remove the adaptive code
for both security and connection-management to avoid unneces-
sary performance overhead due to the adaptive code (producing X4

from X8 and X1 from X4, respectively).
We identify three approaches to realize transparent shaping that

differ according to the placement of hooks (see Figure 2): (1) hooks
can be incorporated inside an application program itself, (2) inside
its supporting middleware, or (3) inside the system platform (op-
erating system and network protocols). A number of projects on
cross-layer adaptation address the last case [17–19]. In this paper,
we consider only the first two cases, where the hooks are incorpo-
rated either inside the middleware or inside the application. Next,
we describe two concrete realizations of each type of transparent
shaping. The first, described in Section 4, is a middleware-based
approach that uses CORBA portable interceptors [15] as hooks.
The second, described in Section 5, uses a combination of aspect
weaving and metaobject protocols to introduce dynamic adaptation
to the application code directly. Both realizations adhere to the
general model described above.

4. MIDDLEWARE-BASED APPROACH
The first realization of transparent shaping we consider is the

Adaptive CORBA Template (ACT) [20, 21], which we developed to

Client Program Server Program

Application
Layer

Middleware
Layer

Program component Flow of service request Hook

process boundaries

NetworkNetwork

Requester
Component

Provider
Component

Operating
System

Interaction

Figure 2: Alternative places to insert hooks.

enable dynamic adaptation in existing CORBA programs. ACT
enhances CORBA ORBs to support dynamic reconfiguration of
middleware services transparently not only to the application code,
but also to the middleware code itself. As a realization of trans-
parent shaping, ACT produces an adapt-ready version of an ex-
isting CORBA program by introducing a hook at startup time to
intercept all CORBA remote interactions. Specifically, ACT uses
CORBA portable interceptors [15], which can be incorporated into
a CORBA program at startup time using a command-line param-
eter. Later at run time, these hooks can be used to insert adaptive
code into the adapt-ready program, which in turn can adapt the re-
quests, replies, and exceptions passing through the ORBs. In this
manner, ACT enables run-time improvements to the program in
response to unanticipated changes in its execution environment, ef-
fectively producing other members of the adaptable program fam-
ily dynamically. To evaluate the performance and functionality of
ACT, we constructed a prototype of ACT in Java, called ACT/J, a
language-specific realization of ACT.

Figure 3 shows the flow of a request/reply sequence in a simple
CORBA application using ACT. For clarity, details such as stubs
and skeletons are not shown. ACT comprises two main compo-
nents: a generic interceptor and an ACT core. A generic intercep-
tor is a specialized request interceptor that is registered with the
ORB of a CORBA application at startup time. The client generic
interceptor intercepts all outgoing requests and incoming replies
(or exceptions) and forwards them to its ACT core. Similarly, the
server generic interceptor intercepts all the incoming requests and
outgoing replies (or exceptions) and forwards them to its ACT core.
A CORBA application is called adapt-ready if a generic interceptor
is registered with all its ORBs at startup time.

In a series of case studies [20, 21], we have used ACT/J to sup-

101

3

Client Program Server Program

Application
Layer

Middleware
Layer

Operating
System

Server Program

process boundaries

NetworkNetwork

Client ORB

ACT Core
Requester object

Generic
Interceptor

Server ORB

ACT Core
Provider object

Generic
Interceptor

Request flowRequest flowProgram component Hook

Figure 3: ACT configuration in the context of a simple CORBA
application.

port dynamic adaptation in three different ways. First, we used
ACT/J to accommodate changing conditions of a wireless network
infrastructure into existing CORBA applications developed origi-
nally for wired networks [21]. Specifically, we were able to adapt a
CORBA image retrieval application to tolerate long periods of dis-
connection if used in a wireless network (note: the original appli-
cation would crash if used by itself in a wireless network). Second,
we used ACT/J to integrate the QuO framework [22] into existing
CORBA applications dynamically and transparently with respect to
the application source code [20]. QuO [22] is a powerful adaptive
framework developed by BBN Technologies that supports dynamic
adaptation for CORBA and Java RMI applications. Finally, we
used ACT/J to integrate new adaptive code into extant QuO applica-
tions transparently [20], enabling interoperation of QuO with other
adaptive frameworks. Our experimental results show that the over-
head introduced by the ACT/J infrastructure is negligible, while the
adaptations offered are highly flexible.

As a middleware-based realization of transparent shaping, ACT
can be used to produce families of adaptable programs from exist-
ing CORBA programs, without the need to modify or recompile
their source code. Using the generic interceptor as a hook in-
side middleware at startup time, ACT enables independent devel-
opment and deployment of adaptive code from the application code
at run time. In ACT, adaptive code are realized as software compo-
nents (rules and proxies) that can be deployed inside the ACT core
dynamically. By allowing dynamic insertion and removal of such
adaptive code, ACT enables dynamic conversion of an adapt-ready
CORBA program to different adaptable programs in its correspond-
ing program subfamily.

5. LANGUAGE-BASED APPROACH
Although transparent shaping can be realized by incorporating

hooks inside middleware, as in ACT, many programs do not use
middleware explicitly. In this section, we discuss TRAP (Trans-
parent Reflective Aspect Programming) [23], a language-based re-
alization of transparent shaping that supports dynamic adaptation
in existing programs developed in class-based, object-oriented pro-
gramming languages. TRAP uses generative techniques to create
an adapt-ready application, without requiring any direct modifica-
tions to the existing programs.

With TRAP, the developer selects at compile time a subset of
classes in the existing program that are to be reflective at run time.
We say a class is reflective at run time if its behavior (e.g., the im-
plementation of its methods) can be inspected and modified dy-
namically. Since many object-oriented languages, such as Java and

C++, do not support such functionality inherently, TRAP uses gen-
erative techniques to produce an adapt-ready program with hooks
that provide the reflective facilities for the selected classes. As the
adapt-ready program executes, new behavior can be introduced to
the program by insertion and removal of adaptive code via inter-
faces to the reflective classes.

We developed TRAP/J, a prototype instantiation of TRAP for
Java programs [23]. The operation of the first step, converting an
existing Java program into an adapt-ready program, is depicted in
Figure 4. We assume that the .java source files of the original
application are not available. The application compiled class files
(.class files) and a configuration file containing a list of class
names (the ones selected to be reflective) are input to an Aspect
Generator and a Reflective Class Generator. For each class name
in the list, these generators produce one aspect, one wrapper-level
class, and one meta-level class. Next, the generated aspects and re-
flective classes, along with the original application compiled class
files, are passed to the AspectJ compiler (ajc) [24] , which weaves
the generated and original application code together to produce an
adapt-ready application. The second step occurs at run time, when
new behavior can be introduced to the adapt-ready application us-
ing the wrapper- and meta-level classes (also referred to as the
adaptation infrastructure). Specifically, the interface of the meta-
level class includes services that enable methods of the wrapper-
level class to be overridden at run time with new implementations,
called delegates.

Reflective Class Generator

Original application
(.class files)

AspectJ Compiler (ajc)

Intercepting Aspect Generator

A configuration file (contains a list of
classes to become reflective)

AspectAspect
Intercepting

Aspects

TRAP/J at compile timeTRAP/J at compile time

Data Flow

Generated adapt-ready
application (.class files)

AspectAspect
Wrapper-Level

Classes

A file A Process

AspectAspect
Meta-Level

Classes

TRAP/J boundary

Figure 4: TRAP/J operation at compile time.

For example, in an earlier study [23] we developed a delegate
that effectively allows selected Java sockets in an existing program
to be replaced with adaptable communication middleware compo-
nents called MetaSockets. A MetaSocket is created from existing
Java socket classes, but its structure and behavior can be adapted
at run time in response to external stimuli such as dynamic wire-
less channel conditions. Specifically, data sent or received on the
socket is passed through a pipeline of filters. A MetaSocket itself

102

4

Figure 5: Transparent shaping contributions and artifacts.

can be reconfigured dynamically in its filter pipeline. The filter
pipeline can be reconfigured dynamically, that is, filters can be in-
serted and removed, in response to changes in changing conditions.
Moreover, the filter components can be developed by third parties
and can be independent of the functional code of an application.
Using TRAP/J and MetaSockets, we demonstrated how to trans-
form existing network applications into adaptive applications that
can better tolerate dynamic conditions on wireless networks [23].

In summary, TRAP enables production of adaptable program
families from existing programs developed in class-based, object-
oriented programming languages. Using the wrapper- and meta-
level classes as hooks instrumented inside the application code at
compile time, TRAP enables separate development and deploy-
ment of adaptive code in existing programs at run time. In TRAP,
pieces of adaptive code are realized as delegates that can be in-
serted into and removed from an adapt-ready program dynamically,
thereby converting the adapt-ready program to adaptable programs
in its corresponding program subfamily.

6. DISCUSSION
Figure 5 summarizes our completed tasks related to transparent

shaping. We have implemented and tested ACT/J and TRAP/J,
as described above. We have also developed several core assets
for supporting transparent shaping, including examples of hooks,
adaptive code, and existing applications. The hooks in TRAP/J are
pairs of wrappers and meta classes, which are generated by TRAP/J
generators automatically. In ACT/J, there is only one hook, the
generic portable interceptor, which can be reused in any CORBA
program. Adaptive code in TRAP/J is realized by delegates. A
reusable delegate using MetaSockets and filters is provided. A
generic proxy was developed for ACT/J that can be used in any
existing CORBA application. The generic proxy can receive any
CORBA request and can adapt it using adaptive code realized by
rules.

We are currently addressing several other aspects of transparent
shaping. To support existing programs developed in C++, mem-
bers of our group have already implemented TRAP/C++ [25] using

compile-time meta-object protocols supported by Open C++ [26].
In addition, we are investigating the development of TRAP/C#. To
support CORBA programs developed using C++ ORBs, we plan
to develop ACT/C++. We are also investigating techniques to sup-
port the insertion of hooks for adaptation into the operating system
kernel [19], the third case mentioned earlier.

Transparent shaping complements other work in adaptive soft-
ware, particularly adaptive middleware. Figure 6 depicts this re-
lationship, according to Schmidt’s four layer middleware taxon-
omy [27]. Please note that the frameworks mentioned inside the
transparent shaping boundary can be incorporated into existing ap-
plications transparently, while the ones outside this boundary re-
quire explicit calls from the application source code. As in our
work with TRAP/J and MetaSockets, transparent shaping can en-
able existing non-adaptive applications to take advantage of adap-
tive host-infrastructure middleware services such as MetaSockets.
Also, using our ACT/J framework, transparent shaping can en-
able existing CORBA applications to take advantage of adaptive
common middleware services such as QuO. In addition, we note
that many adaptive frameworks developed by other groups can be
used to support transparent shaping. Examples include Composi-
tion Filters [28], RNTL ARCAD [10], Interoperable Replication
Logic [29], FTS [30], TAO Load Balancing [31], Iguana/J [32],
Prose [33], Guaranà [34], Eternal [35], and Rocks/Racks [36]. In [1],
we provided a a summary of these techniques.

Finally, we note that transparent shaping has potential impact
beyond supporting adaptation in individual programs, for exam-
ple, to support application integration [37]. To integrate two ex-
isting heterogeneous applications, possibly developed in different
programming languages and targeted to run on different platforms,
one needs to convert data and commands between the two appli-
cations on an ongoing basis. Transparent shaping offers a solu-
tion to this problem, without the need to modify application source
code directly. In preliminary studies [37], we have proposed several
alternative architectures and showed how transparent shaping can
support interoperability, via Web services, for Java RMI, CORBA,
and .NET applications. As a proof of concept, we have conducted

103

5

Adaptable Applications, Existing/Non-Adaptable Applications

ACT/J, IRL,FTS,TAO-LB, …

TRAP/J, Composition Filters, RNTL ARCAD, …

KMX, Eternal, Rocks, Racks, DEOS, GRACE, Graybox, …

Iguana/J, PROSE, Guaraná, …

Windows OS, Linux OS, Sun Solaris OS, Mac OS

M
id

dl
ew

ar
eCommon Services

Domain-Specific
Services

Application

System Platform

Host-Infrastructure
Services

Distribution Services

Transparent shaping boundary

Java RMI, TAO,DynamicTAO,Orbix, JacORB, Squirrel,OpenCorba, OpenORB, Electra,…

BBS, …
T

ra
ns

pa
re

nt
T

ra
ns

pa
re

nt
Sh

ap
in

g
Sh

ap
in

g QuO, OGS, …

MetaSockets, Java Net Package, ACE, Horus, Isis, Ensemble, …

Hooks to incorporate adaptive code dynamically

Figure 6: Relationship of transparent shaping to other contributions.

a case study that demonstrates the use of transparent shaping in the
integration of an image retrieval application developed in CORBA
with a frame grabber application developed in .NET.

7. CONCLUSIONS AND FUTURE WORK
Transparent shaping supports reuse of existing programs in new,

dynamic environments even though the specific characteristics of
such new environments were not necessarily anticipated during the
original design of the programs. In particular, many existing pro-
grams, not designed to be adaptable, are being ported to dynamic
wireless environments, or hardened in other ways to support perva-
sive and autonomic computing. We propose an approach to trans-
parent shaping based on the concept of program families and demon-
strate how automated methods can be used to transform a program
into another member of the same family. Our approach integrates
four key technologies: aspect-oriented programming, behavioral
reflection, component-based programming, and adaptive middle-
ware. We highlighted two different realizations of transparent shap-
ing, ACT and TRAP, and showed how they realize the general adap-
tive programming model. In addition to our work on other real-
izations of transparent shaping, as well as application integration,
we are also addressing several other aspects of transparent shap-
ing: coordination of adaptive behavior across system layers and
among different systems, formal techniques to ensure that adapta-
tions leave the system in a consistent state [38], preventing adapta-
tion mechanisms from being exploited by would-be attackers, and
constructing “product lines” of adaptable software.

Acknowledgements. We express our gratitude to the faculty and
students in the Software Engineering and Network Systems Labo-
ratory at Michigan State University for their feedback and their in-
sightful discussions on this work. This work was supported in part
by the U.S. Department of the Navy, Office of Naval Research un-
der Grant No. N00014-01-1-0744, and in part by National Science
Foundation grants CCR-9912407, EIA-0000433, EIA-0130724, ITR-
0313142, EIA-0000433, and CCR-9901017.

8. REFERENCES
[1] Philip K. McKinley, Masoud Sadjadi, Eric P. Kasten, and

Betty H. C. Cheng. Composing adaptive software. IEEE
Computer, pages 56–64, July 2004.

[2] M. Weiser. Ubiquitous computing. IEEE Computer,
26(10):71–72, October 1993.

[3] Jeffrey O. Kephart and David M. Chess. The vision of
autonomic computing. IEEE Computer, 36(1):41–50, 2003.

[4] David L. Parnas. On the design and development of program
families. IEEE Transactions on Software Engineering,
March 1976.

[5] Peri Tarr and Harold Ossher, editors. Workshop on Advanced
Separation of Concerns in Software Engineering at ICSE
2001 (W17), May 2001.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J. M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP). Springer-Verlag LNCS 1241, June 1997.

104

6

[7] Communications of the ACM, Special Issue on
Aspect-Oriented Programming, volume 44, October 2001.

[8] Pattie Maes. Concepts and experiments in computational
reflection. In Proceedings of the ACM Conference on
Object-Oriented Languages (OOPSLA), pages 147–155.
ACM Press, December 1987.

[9] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow.
The Art of Metaobject Protocols. MIT Press, 1991.

[10] Pierre Charles David, Thomas Ledoux, and Noury M. N.
Bouraqadi-Saadani. Two-step weaving with reflection using
AspectJ. In OOPSLA 2001 Workshop on Advanced
Separation of Concerns in Object-Oriented Systems, Tampa,
October 2001.

[11] Clemens Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, 1999.

[12] David E. Bakken. Middleware. Kluwer Academic Press,
2001.

[13] Proceedings of the Middleware’2000 Workshop on Reflective
Middleware (RM2000), New York, April 2000.

[14] Z. Yang, B. H.C. Cheng, R. E. K. Stirewalt, J. Sowell,
S. Masoud Sadjadi, and P. K. McKinley. An aspect-oriented
approach to dynamic adaptation. In Proceedings of the ACM
SIGSOFT Workshop On Self-healing Software (WOSS’02),
November 2002.

[15] Object Management Group, Framingham, Massachusett. The
Common Object Request Broker: Architecture and
Specification Version 3.0, July 2003.

[16] Geoff A. Cohen, Jeffrey S. Chase, and David Kaminsky.
Automatic program transformation with JOIE. In 1998
Usenix Technical Conference, June 1998.

[17] S. Adve, A. Harris, C. Hughes, D. Jones, R. Kravets,
K. Nahrstedt, D. Sachs, R. Sasanka, J. Srinivasan, and
W. Yuan. The Illinois GRACE project: Global resource
adaptation through cooperation, 2002.

[18] Distributed extensible open systems (the DEOS project),
2004. Georgia Institute of Technology - College of
Computing.

[19] F. Samimi, P. K. McKinley, S. Masoud Sadjadi, and P. Ge.
Kernel-middleware cooperation in support of adaptive
mobile computing. In the Second International Workshop on
Middleware for Pervasive and Ad-Hoc Computing.

[20] S. Masoud Sadjadi and P. K. McKinley. ACT: An adaptive
CORBA template to support unanticipated adaptation. In
Proceedings of the 24th IEEE International Conference on
Distributed Computing Systems (ICDCS’04), Tokyo, Japan,
March 2004.

[21] S. Masoud Sadjadi and P. K. McKinley. Transparent
self-optimization in existing CORBA applications. In Proc.
of the International Conference on Autonomic Computing
(ICAC-04), pages 88–95, New York, NY, May 2004.

[22] John A. Zinky, David E. Bakken, and Richard E. Schantz.
Architectural support for quality of service for CORBA
objects. Theory and Practice of Object Systems, 3(1), 1997.

[23] S. Masoud Sadjadi, Philip K. McKinley, Betty H.C. Cheng,
and R.E. Kurt Stirewalt. TRAP/J: Transparent generation of
adaptable java programs. In Proceedings of the International
Symposium on Distributed Objects and Applications
(DOA’04), Agia Napa, Cyprus, October 2004.

[24] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of
AspectJ. Lecture Notes in Computer Science, 2072:327–355,

2001.
[25] Scott D. Fleming, Betty H.C. Cheng, R.E. Kurt Stirewalt,

and Philip K. McKinley. An approach to implementing
dynamic adaptation in c++. In Proceedings of the first
Workshop on the Design and Evolution of Autonomic
Application Software 2005 (DEAS’05), in conjunction with
ICSE 2005, St. Louis, Missouri, May 2005. To appear.

[26] Shigeru Chiba and Takashi Masuda. Designing an extensible
distributed language with a meta-level architecture. Lecture
Notes in Computer Science, 707, 1993.

[27] Douglas C. Schmidt. Middleware for real-time and
embedded systems. Communications of the ACM, 45(6),
June 2002.

[28] L. Bergmans and M. Aksit. Composing crosscutting
concerns using composition filters. Communications of
ACM, (10):51–57, October 2001.

[29] R. Baldoni, C. Marchetti, and A. Termini. Active software
replication through a three-tier approach. In Proceedings of
the 22th IEEE International Symposium on Reliable
Distributed Systems (SRDS02), pages 109–118, Osaka,
Japan, October 2002.

[30] Erez Hadad. Architectures for Fault-Tolerant
Object-Oriented Middleware Services. PhD thesis, Computer
Science Department, The Technion - Israel Institute of
Technology, 2001.

[31] Ossama Othman. The design, optimization, and performance
of an adaptive middleware load balancing service. Master’s
thesis, University of California, Irvine, 2002.

[32] Barry Redmond and Vinny Cahill. Supporting unanticipated
dynamic adaptation of application behaviour. In Proceedings
of the 16th European Conference on Object-Oriented
Programming, June 2002.

[33] A. Popovici, T. Gross, and G. Alonso. Dynamic homogenous
AOP with PROSE. Technical report, Department of
Computer Science, Federal Institute of Technology, Zurich,
2001.

[34] Alexandre Oliva and Luiz Eduardo Buzato. The
implementation of Guaraná on Java. Technical Report
IC-98-32, Universidade Estadual de Campinas, September
1998.

[35] L. Moser, P. Melliar-Smith, P. Narasimhan, L. Tewksbury,
and V. Kalogeraki. The Eternal system: An architecture for
enterprise applications. In Proceedings of the Third
International Enterprise Distributed Object Computing
Conference (EDOC’99), July 1999.

[36] Victor C. Zandy and Barton P. Miller. Reliable network
connections. In Proceedings of the Eighth Annual
International Conference on Mobile Computing and
Networking, pages 95–106, September 2002.

[37] S. Masoud Sadjadi. Transparent Shaping for Existing
Software to Support Pervasive and Autonomic Computing.
PhD thesis, Department of Computer Science, Michigan
State University, East Lansing, United States, August 2004.

[38] Ji Zhang, Zhenxiao Yang, Betty H.C. Cheng, and Philip K.
McKinley. Adding safeness to dynamic adaptation
techniques. In Proceedings of the ICSE 2004 Workshop on
Architecting Dependable Systems, Edinburgh, Scotland, May
2004.

105

7

