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Abstract—This paper describes the design and operation of a composable proxy infrastructure that enables mobile Internet users to

collaborate via heterogeneous devices and network connections. The approach is based on detachable Java I/O streams, which

enable proxy filters and transcoders to be dynamically inserted, removed, and reordered on a given data stream. Unlike conventional

Java I/O streams, detachable streams can be stopped, disconnected, reconnected, and restarted. As such, they provide a convenient

method by which to support the dynamic composition of proxy services. Moreover, use of the I/O stream abstraction enables network

distribution and stream adaptability to be implemented transparently with respect to application components. The operation and

implementation of detachable streams are described. To evaluate the composable proxy infrastructure, it is used to enhance

interactive audio communication among users of a Web-based collaborative computing framework. Two forward error correction (FEC)

proxylets are developed, one using block erasure codes and the other using the GSM 06.10 encoding algorithm. Separately, each type

of FEC improves the ability of the audio stream to tolerate errors in a wireless LAN environment. When composed in a single proxy,

however, they cooperate to correct additional types of burst errors. Results are presented from a performance study conducted on a

mobile computing testbed.

Index Terms—Adaptive middleware, heterogeneous collaborative computing, mobile hosts, wireless local area networks, forward

error correction, interactive audio streams, component-based design.
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1 INTRODUCTION

UBIQUITOUS data access is becoming reality due to the
large-scale deployment of wireless communication

services and advances in mobile computing devices. While
cellular telephony is the major contributor to this revolu-
tion, many applications demand higher bandwidth than
cellular networks are likely to provide in the near future. As
a result, wireless local area networks (WLANs) are available
in many hotels, airports, schools, homes, and businesses.
This “wireless edge” of the Internet includes those nodes
that are one, or at most a few, wireless hops from the wired
infrastructure. In addition to single-user applications, such
as Web browsing and e-mail, this expanding mobile
infrastructure will support a wide variety of multiparty,
collaborative applications. Examples include computer-
supported cooperative work, wireless instructional envir-
onments, and mobile operator support in large industrial
and public facilities. A diverse communication environment
enables individuals to collaborate via widely disparate
technologies, some using workstations on high-speed local
area networks (LANs), and others using wireless handheld
or wearable devices.

The multicast-capable infrastructure offered by WLANs is
well-suited to supporting collaborative applications, but,
unfortunately, mobile computing environments exhibit
operating conditions that differ greatly from their wired
counterparts. In particular, the application must tolerate the
highly dynamic channel conditions that arise as the users
move about the environment. Moreover, the computing
devices used by participants often vary in terms of display
characteristics, processor speed, memory size, and battery
lifetimes. Given their synchronous and interactive nature,
collaborative applications are particularly sensitive to these
differences. To enable effective collaboration among users in
such environments, the communcation-related software
must be able to adapt to these dynamic conditions at runtime.

One approach to accommodating heterogeneity and
dynamic changes is to introduce a layer of adaptive
middleware between applications and underlying transport
services [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15]. The appropriate middleware framework can
help to insulate application components from platform
variations and changes in network conditions, minimize the
state information that must be migrated during handoff
from one device to another, and simplify the maintenance
of security and fault tolerance invariants. Moreover, a
properly designed middleware framework can facilitate the
development of new applications through software reuse
and domain-specific extensibility.

We are currently conducting a project called RAPIDware
that addresses the design and implementation of middle-
ware services for dynamic, heterogeneous environments. A
major goal of the RAPIDware project is to develop adaptive
mechanisms and programming abstractions that enable
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middleware frameworks to execute in an autonomous
manner, instantiating and reconfiguring components at
runtime in response to the changing needs of client systems.
Such functionality is particularly important in proxy servers,
which are often used to mitigate the limitations of mobile
hosts and their wireless connections [8], [11], [16], [17], [18],
[19], [20]. Adopting the terminology of the IETF Task Force
on Open Pluggable Edge Services (OPES) [21], proxies are
composed of many proxylets, which are functional compo-
nents that can be inserted and removed dynamically at
runtime without disturbing the network state.

This paper describes the design and operation of a
RAPIDware proxy infrastructure that uses a set of detach-
able Java I/O stream classes developed by our group.
Unlike conventional Java I/O streams, these detachable
streams can be stopped, disconnected, reconnected, and
restarted. As such, they provide part of the “glue” needed
to support the dynamic composition of proxylets. More-
over, use of the I/O stream abstraction provides a clean
way to implement distribution and adaptability of inter-
mediate processing components transparently with respect
to application components. To evaluate the operation and
performance of the composable proxy infrastructure, we
apply it to the problem of enhancing interactive audio
streams transmitted among users of a Web-based collabora-
tion framework. Specifically, we show how the proxy
infrastructure can be used to combine two independent
forward error correction (FEC) proxylets, one using block
erasure codes [22] and the other using the GSM 06.10
encoding algorithm for wireless telephones [23]. Separately,
each type of FEC improves the ability of the audio stream to
tolerate errors in a WLAN environment. However, by
simply plugging both proxylets into the proxy, they
cooperate in a synergistic manner to correct additional
types of burst errors occurring on the wireless network.

The remainder of the paper is organized as follows: In
Section 2, we discuss the Pavilion groupware framework
used in this study to illustrate the effects of dynamically
composable proxies. Section 3 describes the design and
operation of detachable streams. Section 4 describes the
individual operation of the two audio proxylets and their
combined functionality when coupled in a single proxy
server. Section 5 presents results of an experimental study

on a mobile computing testbed. Section 6 discusses related
work on composable proxy services. Section 7 presents our
conclusions and discusses future directions for the RAPID-
ware project.

2 BACKGROUND

To support our study of Web-based collaboration in
heterogeneous wireless environments, we have developed
an object-oriented groupware framework called Pavilion
[24]. Pavilion can be used in a default mode in which it
operates as a synchronous collaborative web browser [25].
As shown in Fig. 1, Pavilion uses four major components to
provide a synchronous environment to its users: browser
interfaces, a suite of multicast protocols, an extensible
leadership protocol, and configurable proxy servers. By
default, a group member acquires leadership by simply
selecting a hyperlink in his/her browser. On the current
leader’s system, shown on the left in Fig. 1, the browser
interface monitors the activities of the web browser. The
interface is notified when a new URL is loaded by the
browser, including the loading of special types of resources,
such as PostScript files, PowerPoint presentations, and
audio and video clips. The leader’s browser interface
reliably multicasts this URL to all participants, while the
leader’s proxy server multicasts the Web resource itself, as
well as any embedded or linked files, to the proxy servers of
the other group members. At each receiving system, the
browser interface requests the local Web browser to load
the new URL. The target Web browser will subsequently
initiate retrieval of the file(s), via its proxy, which will
return the requested item(s). Pavilion currently runs on
desktop, laptop, wearable, and handheld computer sys-
tems. While users participate in a collaborative browsing
session, they can speak with one another via interactive
audio channels.

When multimedia applications such as Pavilion are
executed in a wireless environment, proxies are often used
to represent mobile hosts to the rest of the network [8], [11],
[16], [17], [18], [19]. In the case of Pavilion, we have
designed proxies to provide transcoding of data streams to
reduce bandwidth [26], data caching for memory-limited
handheld devices [27], and forward error correction for
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wireless video streaming [28], audio streaming [29], and
reliable multicasting of Web resources [20]. However, those
proxies were configured statically and did not adapt to
changing conditions.

To illustrate the need for dynamic composition of
proxies, let us consider the configuration shown in Fig. 2.
Suppose that a proxy server is instantiated to support three
mobile users, connected via a wireless LAN, who are
collaborating via a Pavilion session with one another and
with a set of users on the wired network. Among other
duties, such a proxy might transcode images and video
streams into lower-bandwidth formats prior to transmission
on the wireless network. Now, let us assume that one of the
users wants to maintain the connection, including a live
audio stream from another user, as she moves from her
office (near the wireless access point) to a conference room
down the hall. The packet loss characteristics of WLANs
can change dramatically over a distance of only several
meters [20]. When losses rise above a given level, the proxy
should insert an FEC proxylet into data streams in order to
make them more resilient to losses. However, the insertion
of the proxylet should not disturb the connections to the
data sources and should take place only as needed in order
to minimize bandwidth consumption.

The RAPIDware project addresses the dynamic reconfi-
guration of middleware components, including proxylets,
in order to accommodate resource-limited hosts and
changing network conditions. We focus on “lightweight”
proxies, typically executed on workstations and other hosts
accessible to the mobile user. While other projects have
studied configurable proxies [8], [11], [17], [30], a key
principle in RAPIDware is to separate adaptive middleware
components from nonadaptive, or core, middleware ser-
vices. We are investigating programming language abstrac-
tions that facilitate this separation and which enable third-
party proxylets to be authenticated and dynamically
inserted into an existing proxy. To manipulate data streams
sent to and from clients’ systems, we require mechanisms
that enable the stream to be disconnected and redirected to
another piece of code, without compromising the integrity
of the data or that of the network state. In this paper, we
explore the use of the Java I/O stream abstraction to achieve
this goal, while providing transparency to the application
and core middleware components. Next, we describe our
proxy infrastructure, which is based on our detachable Java
I/O streams. Following that, we describe a study in

composing proxy services to improve the quality of
interative audio streams among mobile users.

3 PROXY INFRASTRUCTURE

We designed an infrastructure to enable filters, a particular
type of proxylet described in Section 3.3, to be inserted,
removed, and reordered [31]. Fig. 3 depicts an example
RAPIDware proxy and its configuration for processing a
single data stream. The proxy receives and transmits the
stream on EndPoint objects, which encapsulate the actual
network connections. Each EndPoint has an associated
thread that reads or writes data on the network, depending
on the configuration of the EndPoint. A ControlThread
object is responsible for managing the insertion, removal,
and ordering of the filters associated with the stream. In this
example, the proxy comprises three filters, F1, F2, and F3.
The key support mechanisms are detachable stream objects,
namely, DetachableInputStream (DIS) and DetachableOut-
putStream (DOS). The DIS and DOS are used for all
communication among filters and between filters and
EndPoints. The DIS and DOS can be stopped (paused),
disconnected, and reconnected, enabling the dynamic
redirection and modification of data streams. The I/O
stream abstraction provides a convenient way to separate
adaptive behavior from the application and other parts of
the middleware. Now, let us briefly describe the main
classes that make up the proxy infrastructure.

3.1 DetachableOutputStream and
DetachableInputStream

These classes are implemented as modifications to the
Java PipedOutputStream and PipedInputStream classes,
respectively. DetachableOutputStream extends the base
java.io.OutputStream class and DetachableInputStream
extends the base java.io.InputStream class. In addition to
overriding many of the base class methods, we have also
included additional state variables and methods to
implement the functionality needed to support compo-
sable filters. Fig. 4 illustrates the relationship between a
DetachableOutputStream (DOS) and a DetachableInput
Stream (DIS). The design is similar to that of Piped I/O
streams. The connect() method is used to associate a
specific output stream with a specific input stream.
Among other tasks, the DOS.connect() method sets
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DOS.sink and DIS.source variables so as to identify the
other half of the connection. The DIS.connect() method
simply calls the DOS.connect() method, which actually
does this initialization.

As with their piped counterparts, the data written to
the stream is buffered at the DIS side. An invocation of
the DOS.write() method results in a call to the
DIS.receive() method, which places the data in the
buffer. The DIS.available() method returns the number of
bytes currently in the buffer, and data is retrieved from
the buffer using the DIS.read() method. The DOS.flush()
method can be used to force any buffered output bytes to
be written out and notifies any readers that bytes are
waiting in the pipe.

Unlike the PipedOutputStream and PipedInputStream
classes, the detachable stream classes include pause() and
reconnect() methods, enabling the DOS and DIS to be
temporarily stopped and reconnected to other DIS and DOS
objects, respectively. The pause() method has to be called
before disconnecting and switching the data stream. Code
excerpted from DOS.pause() is given in Fig. 5. The method
blocks attempts to write to the buffer and ensures that all the
data has been read from the buffer. It also sets flags indicating
that the two sides are no longer connected. An instance
variable swflag is used to indicate that the stream is being
paused and “switched.” Once the pause method returns, the
reconnect() method can be used to attach the DIS and DOS to
other filters. If the buffer has not yet emptied, the caller is
suspended until the buffer becomes empty. The reconnect()
method checks whether the call is valid (not still in the
connected state) and then mimics the actions of the connect()
method in setting several global variables.

3.2 ControlThread

This class is used to manage the configuration of filters on a
given stream supported by the proxy. The class maintains
the Filter Vector, a dynamic array that holds references to
the currently configured filters. The class implements
methods to insert and remove filters from the Filter Vector,
as well as methods that allow the ControlManger class to
query about the available filters and the methods they
support. The ControlThread receives commands from
across the network, either from the mobile client, from an
application server, or from the control manager (discussed
later). The code segment in Fig. 6 is excerpted from the

insert() method, which inserts a filter at an indexed location

in a running stream.

3.3 Filter and FilterContainer

The base class for proxylets is Detachable.Proxylet. Any

proxylet that is to be used within the RAPIDware

infrastructure needs to extend this base class. The Proxylet

class extends the Thread class and thus is inherently

runnable. The Filter class extends the base class and is

meant to be further extended by any specific proxy filter

used in the system; see Fig. 7. The author of a filter writes
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Fig. 4. Configuration of detachable streams.
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the functional code as the run() method of the filter. The
Filter class contains a DIS and a DOS object, along with their
corresponding standard references, called DIS and DOS.
The ControlThread uses these references to manipulate the
stream connections. A group of methods (e.g., setDIS,
setDOS, getid) is used to establish references to the DIS and
DOS in the filter code itself.

This architecture can be used to define many types of
filters since the developer can include any type of
processing by overriding the filter’s run() method. Hence,
filters can be defined for error control, compression,
encryption, virus scanning, and so on. The main constraint
in the Filter class is that the connections to other
components use the DIS/DOS pipeline structure. (The
Proxylet superclass is more general in that an instance of
this class can include arbitrary connections to other
components.) The FilterContainer class is used to hold a
vector of Filter objects. The FilterContainer class has
methods to provide the number of Filters available and an
enumeration method to return a String enumeration of the
Filter objects names.

3.4 EndPoints

These are extensions of Filters that are instantiated by the
ControlThread to provide proxy input and output. If the
I/O is network-based, then the EndPoint objects would be a
EndPointSocketReader and EndPointSocketWriter. If the
I/O is a nonnetwork stream, then we would use an
EndPointStreamReader and EndPointStreamWriter. Each
EndPoint contains an active thread that handles I/O to and
from the proxy. Combined with the ControlThread, two
EndPoints comprise a “null” proxy, that is, one that simply
forwards data without modifying it. Upon insertion of a
filter between the EndPoints, the stream is redirected
through the new filter.

3.5 Sender and Receiver Filter Matching

Each Filter has associated with it a unique ID and, possibly,
a unique peerID. The former is used to identify the filter

and the latter, if present, is used to identify a peer filter on
the other side of the communication channel. Given a filter
that performs some processing on outgoing packets, its peer
filter performs the reverse processing on incoming packets.
For example, a Compressor filter on the sending end of a
connection requires a DeCompressor filter on the receiving
end. Each filter, together with its peer filter, has to comply
with a generic protocol that defines the format and use of
application-level headers. Specifically, each filter on the
sending side of a connection (for example, at a proxy) adds
a header to the packets before writing them to its DOS. The
first field in the header identifies the peer filter needed at
the receiver; the remaining fields are used internally by the
filter and the peer. When a packet arrives at the receiving
side, it is first delivered to an EndPoint object, where the
peerID of the packet is checked. If the EndPoint is
connected to a filter whose ID matches the peerID contained
in the incoming packet, then the EndPoint will deliver the
packet to the filter via its DOS. If a match does not occur,
then the ControlThread is notified since either a filter is
missing from the FilterContainer or the ordering of filters
(and their peers) has changed. The ControlThread will
insert, remove, or reorder the filters to handle this situation.
As a packet traverses peer filters at the receiving side, each
peer filter verifies that the next ID in the packet header
matches the next filter in the pipeline. If not, again the
ControlThread is notified of the situation and the required
modification to the pipeline is carried out. Once a packet
has been processed by all necessary peer filters, it is
delivered to the application.

3.6 ControlManager

To test the behavior of RAPIDware filters and related
components, we found it useful to develop an interactive
administration program to monitor and manage RAPID-
ware-based collaborative sessions. The ControlManager
class has a Swing-based GUI designed for this purpose.
Based on responses to queries, the ControlManager
constructs a graphical representation of the state of the
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proxy, including the current configuration of filters. The
interface displays the current configuration of proxy filters
and has pull-down menus and dialog text boxes that allow
an administrator to insert and remove filters at specified
locations in a composable proxy. Fig. 8 shows a sample
trace in which the Control Manager was used to insert, then
later remove, an FEC filter on an interactive audio stream
being delivered to one of our wireless laptops. The
reduction in packet loss rate is striking; details are
discussed in Section 5.

We note that the latency for inserting filters is small, at
most a few milliseconds. The actual switching of the data
stream by reconfiguring DIS/DOS connections is negligible,
a few instructions. The largest part of the potential delay is
waiting for an internal DIS buffer to be read and processed
by an existing (downstream) filter. However, by default, the
DIS buffer size is only 1,024 bytes and, in our experience,
the switching causes no noticeable gap in audio streams.
Delays in delivering the data to the receiving application
and, hence, limits on the number and type of filters that can
be used together in a proxy, depend on a combination of
factors: the amount of processing performed by each filter,
the timing requirements of the data stream, and any filter-
specific delay introduced at the receiving side. Section 4
discusses this issue in the context of audio streaming.

4 THE AUDIO FILTERS AND THEIR COMPOSITION

To evaluate the operation and performance of the RAPID-
ware DIS/DOS proxy infrastructure, as well as to determine
which new features are needed, we have constructed
several filters and other proxylets. For example, we have
ported proxy services from Pavilion (such as video
transcoding and reliable muliticasting services) to the new
framework. We are also developing new proxylets related
to security management and handoff of applications among
different graphical displays. The focus of this paper is on
our two different audio FEC filters, each of which can be
independently inserted in a running audio stream in order
to improve the quality of communication among mobile
users. As we shall show later, chaining together the two
filters can provide a level of error correction beyond what
either filter can provide separately. We begin by discussing
the packet loss characteristics of wireless LANs (WLANs)

and their effects on interactive audio streaming, followed by
details of the two audio FEC filters and a description of
their combined operation.

4.1 Characteristics of Wireless LANs

The performance of group communication services, such as
audio multicasting for collaborative Web applications, is
affected by four main characteristics of WLANs. First, the
packet loss rates are highly dynamic and location-depen-
dent [20]. Fig. 9a demonstrates this behavior by plotting the
relationship between signal-to-noise ratio (SNR) and packet
loss rate during a short excursion within range of the
wireless access point in our laboratory. The results
demonstrate the highly variable loss rate that can occur in
such environments as the SNR values quickly drop below
the level of 20 dB that is typically considered acceptable.

Second, the loss characteristics of a WLAN are very
different from those of a wired network. In a wired domain,
losses occur mainly due to congestion and the subsequent
buffer overflow. In the wireless domain, however, losses are
more commonly due to external factors like interference,
alignment of antennae, ambient temperature, and so on.
Fig. 9b and Fig. 9c show example burst error distributions
for two locations near our laboratory, where our wireless
access point is located. Location 1 is just outside our
laboratory and location 2 is approximately 25 meters down
a corridor. In both cases, while some large bursts occur,
many are very short and most “burst” errors comprise a
single packet loss. To minimize the loss rate in terms of
bytes, smaller packets are preferred, as shown in Fig. 9d.
Apparently, the errors within larger packets are relatively
localized so that, by sending several smaller packets, some
number of them will be received successfully, whereas the
larger packet would be lost.

Third, the 802.11b CSMA/CA MAC layer provides RTS/
CTS signaling and link-level acknowledgments for unicast
frames, but not for multicast frames. The result is a higher
packet loss rate as observed by applications using UDP/IP
multicast, as opposed to UDP unicast. Fig. 10 demonstrates
this behavior for a typical location just outside our
laboratory. Since multicast delivery of data streams is an
inherent component of collaborative applications, error
control on multicast data streams is a salient issue that
needs to be addressed.

718 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 6, JUNE 2003

Fig. 8. Effect of dynamic insertion and removal of FEC filter.



Fourth, since the wireless channel is a shared broadcast
medium, it is important to minimize the amount of
feedback from receivers. Simultaneous responses from
multiple receivers can cause channel congestion and burden
the access point, thereby hindering the forward transmis-
sion of data. Thus, it is desirable to use proxy-based FEC
instead of proxy-based retransmissions for real-time com-
munication such as interactive audio streams.

4.2 Audio Filter Using Block-Oriented FEC

Our first audio filter uses an FEC mechanism that can be
applied to any data type. It recovers packets that have been
“erased” due to an error detected by the CRC check in the
data link layer. As shown in Fig. 11, an ðn; kÞ block erasure
code converts k source packets into n encoded packets such
that any k of the n encoded packets can be used to
reconstruct the k source packets [32]. In this paper, we use
only systematic codes, which means that the first k of the
n encoded packets are identical to the k source packets. We
refer to the first k packets as data packets, and the remaining
ðnÿ kÞ packets as parity packets. Each set of n encoded
packets is referred to as a group. The advantage of using
block erasure codes for multicasting is that a single parity
packet can be used to correct independent single-packet
losses among different receivers [22]. These codes are
lossless in that a successful decoding produces exactly the
original data.
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Recently, Rizzo [22] studied the feasibility of software
encoding and decoding for packet-level FEC, using a
particular block erasure code called the Vandermonde
code. Depending on the values of k and ðnÿ kÞ, Rizzo
showed that this code can be efficiently executed on many
common microprocessors. Rizzo’s public domain FEC
encoder/decoder library [22] is implemented in C and has
been used in many projects involving multicast commu-
nication [33], [34], [35], [36], [37], including our own prior
studies [20], [28], [29]. Given the emphasis on portability
and code mobility in the RAPIDware project, however, we
decided to switch to an open-source Java implementation of
Rizzo’s FEC library, available from Swarmcast [38]. In
general, we found the Swarmcast library to provide a
convenient interface and good performance. Although
slower than the C implementation, the Java version
(including native code) is able to satisfy real-time audio
encoding and decoding requirements on systems with
modest processing power.

Fig. 12 shows the operational schematic of the major
components of the audio application when this FEC filter is
running. The audio recorder was built as a pure Java
application making use of the Java Sound API. Specifically,
the recording thread uses the javax.sound package to read
audio data from a workstation’s sound card and send it to
the proxy via the wired network. The encoding of the data
is 16 bits per sample, PCM signed, at the standard rate of

8,000 Hz over a mono channel. The audio receiver uses one
thread to read data from the network and store it in a
circular buffer. A second thread reads the data and uses the
Java Sound API to play it.

For data streams directed toward the client system, the
encoder is instantiated on the proxy. The decoder on the
client will be instantiated automatically after the arrival of
the first FEC packet. The encoder and decoder filters have
the same basic construction and simply invoke different
methods in the Swarmcast FEC library. After creating the
FEC encoder filter, the encoder thread loops in its run()
method, collecting packets from the network. When
k packets have been received in the filter’s DIS, the thread
invokes the encode() method, which returns n packets
contained in a new reference buffer. These packets are
labeled with a group identifier and sequence number and
are written to the data stream. The decoder at the client
requires reception of any k packets in a given group in
order to decode the original k data packets. The decoder
thread thus reads up to k packets in a given group, after
which additional packets are discarded. This data is passed
to the decode() method of the FEC codec, which returns the
k original data packets, which are forwarded to the client
application. As an optimization, if all the original k data
packets arrive intact, then the decoder is bypassed. On the
other hand, if fewer than k packets in the group arrive, then
any data packets (among the first k packets) are forwarded
to the application, while the remaining (parity) packets are
discarded.

4.3 GSM Audio Filter

While block-oriented FEC approaches are effective in
improving the quality of interactive audio streams on
wireless networks [29], the group sizes must be relatively
small in order to reduce playback delays. (In our studies,
we typically use ðn; kÞ values of (6, 4) or (8, 4).) Hence, the
overhead in terms of parity packets is relatively high. An
alternative approach with lower delay and lower overhead
is signal processing-based FEC (SFEC) [39], [40], in which a
lossy, compressed encoding of each packet i is piggybacked
onto one or more subsequent packets. If packet i is lost, but
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one of the encodings of packet i arrives at the receiver, then
at least a lower quality version of the packet can be played
to the listener. The parameter � is the offset between the
original packet and its compressed version. Fig. 13 shows
two different examples, one with � ¼ 1 and the other with
� ¼ 2. As mentioned, it is also possible to place multiple
encodings of the same packet in the subsequent stream, for
example, using both � ¼ 1 and � ¼ 3.

The RAPIDware filter that we developed uses GSM 06.10
encoding [23] for generating the redundant copies of packets.
The full rate speech codec in GSM is described as Regular
Pulse Excitation with Long Term Prediction (GSM 06.10 RPE-
LTP). Although GSM is a CPU-intensive coding algorith-
m—it is 1,200 times more costly than normal PCM encoding
[40]—the bandwidth overhead is very small. Specifically, the
GSM encoding creates only 33 bytes for a PCM-encoded
packet containing up to 320 bytes (160 samples). Our filter
uses the Tritonus Java version of the GSM codec, a freeware
package available under GNU public license.

The GSM filter can work in one of two ways. The first is
to piggyback encoded data on subsequent packets, as
shown in Fig. 13. The second is to compute encodings for
multiple packets and create a new packet of encoded data, to
be inserted in the stream at a later point. Fig. 14 shows an
example in which the GSM encodings on each of three
packets are combined into a new packet that is inserted
after the next group of three packets. This second method is
useful when it is important to keep packet sizes small, as in
a wireless LAN.

4.4 Combining the Audio Filters

Either a GSM or FEC filter can be inserted separately into an
audio stream. However, we can also insert both filters, as

shown in Fig. 15 (in the figure and in the remainder of the
paper, we will refer to the filters simply as “GSM” and
“FEC”). If the direction of the audio channel were reversed,
then the encoders would reside on the client and the decoders
on the proxy.

Fig. 16 shows a particular example of the two encoders
working together. The GSM encoder is configured to
operate on a packet basis, computing a GSM encoding for
every three data packets and inserting the new packet after
3� � data packets in the following packet stream. Each
group of four packets (three data packets and one GSM
packet) is forwarded to the FEC filter, which is configured
to compute two parity packets using a (6, 4) block erasure
code. The (6, 4) code can recover up to two lost packets per
group, hence covering the most common packet loss cases,
and does so without any loss in quality. Combining FEC
and GSM code can tolerate relatively long isolated burst
errors, depending on the location of the lost packets relative
to group boundaries. Of course, if GSM instead of FEC is
used to reconstruct a packet, the quality of the resulting
signal will be lower than that of the original.

Use of FEC introduces bandwidth overhead that de-
pends on the values of n, k, and �. Considering the example
illustrated in Fig. 16, if the size of the data packets is
100 bytes, then the overhead is approximately 100 percent
(three packets of error correcting information for every
three packets of data). While this rate seems relatively high,
the 128 kbps rate of our audio channels is low compared to
many other types of traffic. Moreover, a single multicast
audio channel serves multiple participants in a collabora-
tive Web session. In such sessions, maintaining an effective
audio channel among the users is perhaps more important
than the quality of service of other data types, such as
streaming video.

Another issue important to real-time communication is
the additional delay introduced into the packet stream.
While processing at the proxy introduces a small delay, our
experience indicates that stream-specific processing delays
at the receiver are more significant. For example, let us
consider the use of (8, 4) FEC audio encoding in which each
packet contains 3 milliseconds of live audio data. Assume
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Fig. 13. Different ways of using GSM encoding on a packet stream.

(a) GSM encoding with � ¼ 1. (b) GSM encoding with � ¼ 2.

Fig. 14. Application of GSM filter to three-packet groups.

Fig. 15. Configuration of audio filters on proxy and client.



that all four data packets are lost and all four parity packets
arrive at the receiver. Decoding cannot begin until the
fourth parity packet arrives. Even if the proxy can send the
four parity packets immediately following the data packets
(which have a natural spacing of 3 milliseconds) and
encoding and decoding are instantaneous, the playback of
decoded audio will be delayed by at least 9 milliseconds.
The values of n, �, and the packet payload size must be
chosen so that the playback delay does not seriously affect
audio quality.

5 EXPERIMENTAL EVALUATION

In order to study the operation and performance of audio
filters separately and in combination, we conducted a set of
experiments on the mobile computing testbed in our Software
Engineering and Network Systems (SENS) Laboratory.

5.1 Testing Environment

The mobile testbed includes conventional workstations
connected by a 100 Mbps Fast Ethernet switch, three 802.11
WLANs (Lucent WaveLAN, Proxim RangeLAN2, and
Cisco/Aironet), and several mobile handheld and laptop
computer systems. All tests reported here were conducted on
the Aironet WLAN, which uses direct sequence spread
spectrum signaling and has a raw bit rate of 11 Mbps. We used
both wired desktop PCs and wireless laptop PCs as
participating stations in the experimental configuration
depicted in Fig. 17. The sender, proxy, and control manager
were executed on dual-processor 400/450 MHz desktop
workstations, while the mobile nodes were 300 MHz
laptops equipped with Aironet network interface cards.

The Aironet access point and the participating wired
stations were located in our laboratory, while the locations
of the mobile nodes were varied. Although the proxy
multicasts the audio stream on the WLAN, here we report
the results for a single receiver.

Initially, both the proxy and client are configured as
“null” filters, as the Endpoints simply read and retransmit
data. In an actual RAPIDware environment, observer
threads at the client would monitor the packet loss rate
and burst length distribution and would inform the
ControlThread on the proxy of the current situation. The
ControlThread decides when to insert the FEC or GSM
filter. In order to control the testing, however, we used the
Control Manager GUI to insert the filters manually.

5.2 Experimental Results

We started by testing the GSM filter in isolation, setting � to
different values and using both single and double copies of
the encoded data. In all cases, small 48-byte packets
produced considerably better results than 320-byte packets,
so we report only the former here. Fig. 18 shows a sample of
the results. In Fig. 18a, we placed a single encoded copy of
each packet i in its successor packet iþ 1. In Fig. 18b, we
placed one encoded copy in packet iþ 1 and one in packet
iþ 3. Using multiple copies produces a clear advantage in
terms of packet delivery rate. The bandwidth overhead
rates are 69 percent and 138 percent, respectively, when
considering only payload bytes. When including MAC, IP,
and UPD headers and MAC-layer gaps and preamble bytes
(66 bytes total per packet), the rates drop to 29 percent and
58 percent since this method introduces only payload bytes,
but no new packets.
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Fig. 16. Operation of combined audio filters.

Fig. 17. Physical configuration of experimental components.



Fig. 19a, Fig. 19b, and Fig. 19c, respectively, show
sample traces of using the FEC(8, 4) and GSM(n-1) filters,
alone and in combination. When used alone, the overhead
for FEC is 100 percent since this code doubles the number
of packets transmitted. The GSM code in these tests uses
33-bytes to encode three 48-byte packets, so the overhead
is 33=144 ¼ 30%. The overhead of the combination is
ð4 � 48þ 33Þ=ð3 � 48Þ ¼ 156%. The combination is most
effective in recovering data and this result is confirmed by
Fig. 19d, where we averaged the results of five two-minute
runs and computed the packet delivery rate for each of the

methods at a particular location in our building. By
combining the two filters, we are able to reconstruct
97 percent of the audio data, even though the raw packet
delivery rate at this location was only 83 percent.

Finally, we conducted a set of experiments near the
periphery of the wireless cell (Location 3), where large burst
errors are more frequent. In these tests, we again combined
the FEC filter with the GSM filter, but we configured the
latter to use two values of �, both 1 and 3, which enables it
to correct longer burst errors. The overhead of this
combination is ð4 � 48þ 2 � 33Þ=ð2 � 48Þ ¼ 269%. Fig. 20a
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Fig. 18. Sample traces results for the GSM filter with 48-byte packets. (a) � ¼ 1, 48-byte packets. (b) � ¼ 1; 3, 48-byte packets.

Fig. 19. Effects of FEC, GSM filters, and their composition. (a) FEC(8, 4) alone. (b) GSM(n-1) along. (c) FEC(8, 4)+GSM(n-1). (d) Performance

comparision.



shows a short sample trace. Despite the fact that the raw
delivery rate sometimes falls below 50 percent, the
combination of filters is extremely effective in recovering
the lost data. Fig. 20b shows the average results of five two-
minute runs. At this location, the raw delivery rate was only
65 percent, FEC alone raised the rate to 81 percent, and the
GSM filter further improved the rate to 94 percent. The
13 percent GSM improvement over FEC alone compares
with only a 4 percent improvement at Location 2. We
conclude that, while both types of filters improve the
quality of the audio channel, near the cell periphery, they
are almost equally important. These results demonstrate the
utility of being able to compose two different proxylets
easily and dynamically within a single proxy framework.

6 RELATED WORK

In recent years, numerous research groups have addressed
the issue of adaptive middleware frameworks that can
accommodate dynamic, heterogeneous infrastructures. Ex-
amples include CEA [1], MOOSCo [2], BRAIN [3], Squirrel
[4], Adapt [5], MASH [9], TAO [10], MobiWare [11], MCF
[12], QuO [13], MPA [8], Odyssey [14], and DaCapo++ [15],
Rover [6], BARWAN [30], and Sync [41]. These projects
have greatly improved the understanding of how middle-
ware can accommodate device heterogeneity and dynamic
network conditions, particularly in the area of adaptive
communication protocols and services. Indeed, several
projects address dynamic configuration of proxies. In the
remainder of this section, we discuss four such projects and
their relationship to the work presented here.

Zenel [17] developed a general-purpose proxy system
that enables filters to be downloaded and inserted
dynamically on various types of data streams. Different
filters are available for different data streams (MPEG,
HTTP, TCP, and so forth). Zenel conducted extensive
experiments that demonstrated the usefulness of stream-
specific filters. Both high-level filters (above the socket
layer) and low-level filters (requiring kernel support) are
supported. While the implementation is not described in
detail, Zenel does note relatively large insertion delays. The
DIS/DOS mechanism described herein is intended to
provide a simple and perhaps more flexible way to

reconfigure user-level proxy filters and, as such, comple-
ments Zenel’s work. In particular, we hide proxy reconfi-
guration within the I/O stream abstraction in order to
separate adaptive behavior from nonadaptive behavior.
Also, the switching to newly inserted filters requires only a
few machine instructions.

In the MobiWare project [11], “mobile filters” can be
dispatched to various nodes in the network, or to hosts, in
order to achieve bandwidth conservation. Apparently, these
filters are established only during handoff from one
network to another. The detachable stream infrastructure
discussed herein could be used to extend this functionality
so that filters could be reorganized at any time.

The Adapt project at Lancaster [5] uses open bindings to
support manipulation and reconfiguration of communica-
tion paths. The associated object graph mechanism could be
used directly to implement dynamically composable proxy
services through composition of meta-objects. In contrast to
the use of compositional reflection, in this project, we sought
to determine the minimal level of functionality needed to
provide dynamic composition of communication stream
components. The advantage of implementing adaptive
behavior within existing low-level communication mechan-
ism, such as detachable Java I/O streams, is that developers
can construct application code and core middleware services
without changing their methodology. The adaptive part of
the middleware can be developed separately. This strategy
also facilitates the porting of legacy code to a new environ-
ment that requires adaptability.

The Berkeley TranSend proxy is based on the TACC
model [7] in which workers are the active components of the
proxy. The TACC server enables workers to be chained
together in a manner similar to Unix pipes. Details of the
implementation are not available. However, the project
focuses on proxies built atop highly available parallel
workstation clusters, whereas RAPIDware proxies are
intended to be lightweight, on-demand proxies established
dynamically on one or more idle workstations available to
the user.

The Stanford Mobile People Architecture (MPA) [8] is
designed to support person-to-person reachability through
the use of personal proxies. A key component of the personal
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Fig. 20. Effects of FEC and GSM filters near the wireless cell periphery. (a) Sample trace. (b) Performance comparison.



proxy is the use of conversion drivers, which are configured
dynamically to match the capabilities of the user’s device
and network. The RAPIDware project complements this
work by developing programming abstractions to support
the design of such software. Specifically, the detachable
stream mechanism and filter container class could be used
to compose MPA drivers and facilitate their dynamic
loading and unloading from across the network.

Finally, we emphasize that this paper has described only
a small part of the RAPIDware project. A given external
event, such as a sudden decrease in quality on a wireless
link, can affect not only communication protocols, but also
middleware components associated with fault tolerance,
security, and user interfaces. The overall goal of the
RAPIDware project is to develop an integrated methodol-
ogy and programming language support for middleware
adaptability that accommodates cross-cutting concerns in
multiple dimensions. We will report developments in these
areas in future papers.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have described the use of our detachable
Java I/O stream framework to support composition of
proxy services. We presented the design of the framework,
which enables proxylets to be dynamically inserted,
removed, and reordered without disturbing existing net-
work connections. We then demonstrated the use of the
framework to support an important component of mobile
collaborative computing, namely, the use of forward error
correction to improve the quality of multicast audio
streams. We developed two different audio FEC filters,
one using block erasure codes and the other using the
GSM 06.10 encoder, inserted them into the framework, and
evaluated their performance on a WLAN testbed. The main
contribution of this work is to show that independent
proxylets can be composed easily and can cooperate in a
synergistic manner, given the proper supporting proxy
framework.

Our continuing work in this area addresses several
issues: developing additional proxylets for the RAPIDware
framework, developing a rules engine to characterize the
“composability” of proxylets, and application of RAPID-
ware concepts to intrusion detection, fault tolerance, and
user interfaces handoff. Given the increasing presence of
wireless networks in homes and businesses, we envision
application of the proposed techniques to improve perfor-
mance of collaborative applications involving users who
roam within a wireless environment.

7.1 Further Information

A number of related papers and technical reports of the
Software Engineering and Network Systems Laboratory
can be found at the following URL: http://www.cse.
msu.edu/sens.

ACKNOWLEDGMENTS

The authors would like to thank Robel Barrios, Aaron
Malenfant, Jesus Arango, Ji Li, Arun Mani, Suraj Gaurav,
Peng Ge, and Chiping Tang for their contributions to this

work. This work was supported in part by the US

Department of the Navy, Office of Naval Research under

Grant No. N00014-01-1-0744. This work was also supported

in part by US National Science Foundation grants CDA-

9617310, NCR-9706285, CCR-9912407, EIA-0000433, and

EIA-0130724. This work was conducted while U.I. Padma-

nabhan and N. Ancha were graduate students at Michigan

State University.

REFERENCES

[1] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O.
Seidel, and M. Spiteri, “Generic Support for Distributed Applica-
tions,” Computer, vol. 33, no. 3, pp. 68-76, 2000.

[2] H. Miranda, M. Antunes, L. Rodrigues, and A.R. Silva, “Group
Communication Support for Dependable Multi-User Object-
Oriented Environments,” Proc. SRDS Workshop on Dependable
System Middleware and Group Communication (DSMGC 2000), Oct.
2000.

[3] L. Burness, A. Kassler, P. Khengar, E. Kovacs, D. Mandato, J.
Manner, G. Neureiter, T. Robles, and H. Velayos, “The BRAIN
Quality of Service Architecture for Adaptable Services,” Proc. Int’l
Symp. Personal, Indoor, and Mobile Radio Comm. (PIMRC 2000), Sept.
2000.

[4] T. Kramp and R. Koster, “A Service-Centered Approach to QoS-
Supporting Middleware (Work-in-Progress Paper),” Proc. IFIP
Int’l Conf. Distributed Systems Platforms and Open Distributed
Processing (Middleware ’98), Sept. 1998.

[5] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, and P. Robin, “A
Software Architecture for Adaptive Distributed Multimedia
Applications,” IEE Proc.—Software, vol. 145, no. 5, pp. 163-171,
1998.

[6] A.D. Joseph, J.A. Tauber, and M.F. Kaashoek, “Mobile Computing
with the Rover Toolkit,” IEEE Trans. Computers, special issue on
mobile computing, vol. 46, no. 3, Mar. 1997.

[7] A. Fox, S.D. Gribble, Y. Chawathe, and E.A. Brewer, “Adapting to
Network and Client Variation Using Active Proxies: Lessons and
Perspectives,” IEEE Personal Comm., Aug. 1998.

[8] M. Roussopoulos, P. Maniatis, E. Swierk, K. Lai, G. Appenzeller,
and M. Baker, “Person-Level Routing in the Mobile People
Architecture,” Proc. 1999 USENIX Symp. Internet Technologies and
Systems, Oct. 1999.

[9] S. McCanne, E. Brewer, R. Katz, L. Rowe, E. Amir, Y. Chawathe,
A. Coopersmith, K. Mayer-Patel, S. Raman, A. Schuett, D.
Simpson, A. Swan, T. Tung, D. Wu, and B. Smith, “Toward a
Common Infrastructure for Multimedia-Networking Middle-
ware,” Proc. Seventh Int’l Workshop Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV ’97), May 1997.

[10] F. Kuhns, C. O’Ryan, D. C. Schmidt, O. Othman, and J. Parsons,
“The Design and Performance of a Pluggable Protocols Frame-
work for Object Request Broker Middleware,” Proc. IFIP Sixth Int’l
Workshop Protocols for High-Speed Networks (PfHSN ’99), Aug. 1998.

[11] O. Angin, A.T. Campbell, M.E. Kounavis, and R.R.-F.M. Liao,
“The Mobiware Toolkit: Programmable Support for Adaptive
Mobile Networking,” IEEE Personal Comm. Magazine, special issue
on adapting to network and client variability, Aug. 1998.

[12] B. Li and K. Nahrstedt, “A Control-Based Middleware Framework
for Quality of Service Adaptations,” IEEE J. Selected Areas in
Comm., vol. 17, Sept. 1999.

[13] R. Vanegas, J.A. Zinky, J.P. Loyall, D.A. Karr, R.E. Schantz, and
D.E. Bakken, “QuO’s Runtime Support for Quality of Service in
Distributed Objects,” Proc. IFIP Int’l Conf. Distributed Systems
Platforms and Open Distributed Processing (Middleware ’98), Sept.
1998.

[14] B.D. Noble and M. Satyanarayanan, “Experience with Adaptive
Mobile Applications in Odyssey,” Mobile Networks and Applica-
tions, vol. 4, pp. 245-254, 1999.

[15] B. Stiller, C. Class, M. Waldvogel, G. Caronni, and D. Bauer, “A
Flexible Middleware for Multimedia Communication: Design
Implementation, and Experience,” IEEE J. Selected Areas in Comm.,
vol. 17, pp. 1580-1598, Sept. 1999.

[16] B.R. Badrinath, A. Bakre, R. Marantz, and T. Imielinski, “Handling
Mobile Hosts: A Case for Indirect Interaction,” Proc. Fourth
Workshop Workstation Operating Systems, Oct. 1993.

MCKINLEY ET AL.: COMPOSABLE PROXY SERVICES TO SUPPORT COLLABORATION ON THE MOBILE INTERNET 725



[17] B. Zenel, “A General Purpose Proxy Filtering Mechanism Applied
to the Mobile Environment,” Wireless Networks, vol. 5, pp. 391-409,
1999.

[18] L. Chen and T. Suda, “Designing Mobile Computing Systems
Using Distributed Objects,” IEEE Comm. Magazine, vol. 35, Feb.
1997.

[19] Y. Chawathe, S. Fink, S. McCanne, and E. Brewer, “A Proxy
Architecture for Reliable Multicast in Heterogeneous Environ-
ments,” Proc. ACM Multimedia ’98, Sept. 1998.

[20] P.K. McKinley and A.P. Mani, “An Experimental Study of
Adaptive Forward Error Correction for Wireless Collaborative
Computing,” Proc. IEEE 2001 Symp. Applications and the Internet
(SAINT-01), Jan. 2001.

[21] L. Yang and M. Hofmann, “OPES Architecture for Rule Processing
and Service Execution,” Internet Draft draft-yang-opes-rule-
processing-service-execution-00.txt, Feb. 2001.

[22] L. Rizzo, “Effective Erasure Codes for Reliable Computer
Communication Protocols,” ACM Computer Comm. Rev., Apr.
1997.

[23] J. Degener and C. Bormann, “The GSM 06.10 Lossy Speech
Compression Library and Its Applications,” 2000, available at
http://kbs.cs.tu-berlin.de/jutta/toast.html.

[24] P.K. McKinley, A.M. Malenfant, and J.M. Arango, “Pavilion: A
Distributed Middleware Framework for Collaborative Web-Based
Applications,” Proc. ACM SIGGROUP Conf. Supporting Group
Work, pp. 179-188, Nov. 1999.

[25] P.K. McKinley, R.R. Barrios, and A.M. Malenfant, “Design and
Performance Evaluation of a Java-Based Multicast Browser Tool,”
Proc. 19th Int’l Conf. Distributed Computing Systems, pp. 314-322,
1999.

[26] J. Arango and P.K. McKinley, “VGuide: Design and Performance
Evaluation of a Synchronous Collaborative Virtual Reality
Application,” Proc. IEEE Int’l Conf. Multimedia and Expo, July 2000.

[27] P.K. McKinley and J. Li, “Pocket Pavilion: Synchronous Colla-
borative Browsing for Wireless Handheld Computers,” Proc. IEEE
Int’l Conf. Multimedia and Expo, July 2000.

[28] P. Ge and P.K. McKinley, “Experimental Evaluation of Error
Control for Video Multicast over Wireless LANs,” Proc. Third Int’l
Workshop Multimedia Network Systems, Apr. 2001.

[29] P.K. McKinley and S. Gaurav, “Experimental Evaluation of
Forward Error Correction on Multicast Audio Streams in Wireless
LANs,” Proc. ACM Multimedia 2000, pp. 416-418, Nov. 2000.

[30] R.H. Katz et al., “The Bay Area Research Wireless Access Network
(BARWAN),” Proc. Spring COMPCON Conf., 1996.

[31] P.K. McKinley and U.I. Padmanabhan, “Design of Composable
Proxy Filters for Mobile Cmputing,” Proc. Second Int’l Workshop
Wireless Networks and Mobile Computing, Apr. 2001.

[32] A.J. McAuley, “Reliable Broadband Communications Using Burst
Erasure Correcting Code,” Proc. ACM SIGCOMM, pp. 287-306,
Sept. 1990.

[33] L. Rizzo and L. Vicisano, “RMDP: An FEC-Based Reliable
Multicast Protocol for Wireless Environments,” ACM Mobile
Computer and Comm. Rev., vol. 2, Apr. 1998.

[34] J. Nonnenmacher, E.W. Biersack, and D. Towsley, “Parity-Based
Loss Recovery for Reliable Multicast Transmission,” IEEE/ACM
Trans. Networking, vol. 6, no. 4, pp. 349-361, 1998.

[35] C. Huitema, “The Case for Packet Level FEC,” Proc. IFIP Fifth Int’l
Workshop Protocols for High-Speed Networks (PfHSN ’96), pp. 110-
120, Oct. 1996.

[36] J. Gemmell, E. Schooler, and R. Kermode, “A Scalable Multicast
Architecture for One-to-Many Telepresentations,” Proc. IEEE Int’l
Conf. Multimedia Computing Systems, pp. 128-139, 1998.

[37] R. Kermode, “Scoped Hybrid Automatic Repeat ReQuest with
Forward Error Correction (SHARQFEC),” Proc. ACM SIGCOMM,
Sept. 1998.

[38] Swarmcast, “Release Notes for Java FEC v0.5,” http://
www.swarmcast.com, 2001.

[39] M. Podolsky, C. Romer, and S. McCanne, “Simulation of FEC-
Based Error Control for Packet Audio on the Internet,” Proc. IEEE
INFOCOM ’96, Mar. 1998.

[40] J.-C. Bolot and A. Vega-Garcia, “Control Mechanisms for Packet
Audio in Internet,” Proc. IEEE INFOCOM ’96, pp. 232-239, Apr.
1996.

[41] J. Munson and P. Dewan, “Sync: A System for Mobile Collabora-
tive Applications,” Computer, vol. 30, no. 6, pp. 59-66, 1997.

Philip K. McKinley received the BS degree in
mathematics and computer science from Iowa
State University in 1982, the MS degree in
computer science from Purdue University in
1983, and the PhD degree in computer science
from the University of Illinois at Urbana-Cham-
paign in 1989. He is currently a professor in the
Department of Computer Science and Engineer-
ing at Michigan State University. He was
previously a member of technical staff at Bell

Laboratories. Dr. McKinley is an associate editor for the IEEE
Transactions on Parallel and Distributed Systems and is cochair of the
program committee for IEEE ICDCS 2003. His current research
interests include adaptive middleware, collaborative applications, mobile
computing, and group communication protocols. He is a member of the
IEEE and the IEEE Computer Society.

Udiyan I. Padmanabhan received the MS
degree in computer science from Michigan State
University in 2002. He is a program manager in
the Windows CE Operating System group at
Microsoft Corporation in Redmond, Washington.
His current interests include embedded operat-
ing systems, mobile devices, and distributed
middleware technologies.

Nandagopal Ancha received the MS degree in
computer science from Michigan State Univer-
sity in 2001. He is currently a software engineer
with Ericsson IP Infrastructure located in Ra-
leigh, North Carolina. His current interests are in
the design and analysis of communcation
systems and studying complexities involved
from the perspective of an edge router.

Seyed Masoud Sadjadi received the BS
degree in hardware computer engineering from
the University of Tehran in 1995, the MS degree
in software computer engineering from Azad
Tehran University in 1999. He is currently a
doctoral student in the Department of Computer
Science and Engineering at Michigan State
University. His current research interests include
adaptive software, adaptive middleware, colla-
borative applications, mobile computing, multi-

media application, and programming languages. He is a student
member of the IEEE and the IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

726 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 6, JUNE 2003


