Programming Grid Applications with GRID Superscalar

Presenter: Juan Carlos Martinez

Agnostic: Allen Lee
1. Do you believe that the GRID Superscalar would interfere or benefit the concept of the economic model of the GRID as mentioned in a previous presentation (A Case for Economy Grid Architecture for Service Oriented Grid Computing)?

One of the problems this paper presented was the cost obtained by deploying a job in a Grid and not having an exact knowledge of which hosts should be the best to execute each task. Grid Superscalar, in this sense, takes advantage of knowing the resources of each of its available workers and in this way it’s able to know if for example a worker is able to receive and process two tasks at the same time (2 processor host for example) since Grid Superscalar has a configuration file for this kind of information.

2. Would the addition of web services on a GRID utilizing the GRID Superscalar cause issues with the way the GRID Superscalar tries to make sequential programs parallel?

First of all, GS is used as a dynamic library as it is now, and that library is responsible of the parallelization process. Now if we add Web Services into a Grid for example one in each host, then if a program requires to call two of those web services for instance Grid superscalar can make those 2 calls parallel as long as they are not dependent.

3. Some of the applications that the GRID Superscalar is geared towards

require large data files. Do you believe that the overhead of sending the same large files around to support parallel processing could be more harmful or wasteful than operating the process sequentially?

GS tries to exploit the data locality of the files. So if a large file is sent to a machine or a large file is generated as a result in a machine, GS will consider that information in order to decide where to run a job (to avoid transfers in future tasks and minimizing total execution time). Also there is a shared disk mechanism (described in the manual) where you can specify the location of replicas of your files in order to avoid GS to transfer them every time.

4. Could the GRID Superscalar be optimized if it was discovered that there are costs for using various resources? For example, what if it was found that the connection between two systems on the grid is slower than the connections between the other system due to weather or network congestion?

By now the parameters that you can specify about the network are the

theoretical bandwidth in a machine. We do not work with any dynamical information (NWS or similar).

5. How would the GRID Superscalar adjust if one of the computers that were assigned a task on the GRID suddenly becomes unavailable due to weather, for example?

If there is a failure during the execution, current version of GS stops the master (so, the whole process). Then you can re-run the program again without the machine that causes the problem, but the previous computations that have been checkpointed won't be repeated. Currently we have a development version which detects failures in machines and removes failing machines from the computation at runtime, and thus the overall process keeps going.

6. Would there be a reason to use a GRID Superscalar on a GRID that has

few systems, where each system has a unique resource that will likely be used by tasks given to the GRID?

It depends on the form which that Grid has. Imagine that each system is from a different institution, works with a different queuing system, etc... It would be easier to gridify the application using GS than using any other parallel programming model (mpi(Message Passing Interface),etc). Also the file locality policy can reduce transfers compared to MPI, for instance (where you always have to send the data you need to compute).

7. The converting of the applications from sequential to parallel is done without the programmer’s knowledge. How would this affect the ability for programmers to deal with exception handling?

The parallelization is basically functional parallelization. So an error inside the function can be detected the same way in the worker code. When an error is detected, you can return a value to the master meaning that things went wrong in that function.

8. GRIDs have a very fragmented nature where different parts of the GRID are administered by different organizations and the agreements between each organization on the usage are not necessarily the same. How could the Superscalar make sure that performance isn’t being hindered by sending tasks to a system that, by agreement, gives much less CPU utilization than another system?

When you add a machine in the configuration file you can specify the computing power of that machine. Then in the estimation function you can use that value to try to predict the execution time of that operation in the given machine. As you see it is specified statically (GS does not gather any information about the real status of the different systems).

9. Do you feel that it would be possible to use flat files as a synchronization component to allow the GRID Superscalar to allow processes to use a database to maintain the constraints of WaW, RaW, and WaR?

Grid Superscalar does need it because it can do it by itself. File dependency is always checked by the Grid Superscalar in order to know which job can be executed and which one hast to wait until the other one finishes because of data dependencies

10. Does the system provide any sort of protection against renaming files? Would the Double Hashtable system be compromised if a submitted task renames files or makes duplicate files as part of its operations?

You cannot rename source files in a worker (as it is specified in the manual), but you can copy them and make whatever you want with that copy. Also with temporary files (files which are just in that "local domain" of that task) you can do virtually anything (they will be removed after the computation, because a temporary directory is created in order to execute the task).

