State and Events for Web Services: A comparison of five WS-Resource and WS-notification implementations.

Presenter: Jonatan Alava

Agnostic: Oscar Valdivia

Questions about the paper:

1. Are these five implementations (GT4-java, GT4-C, pyGridWare, WSRF:Lite and WSRF.Net) the most popular and complete implementations? How Apache WSRF, could be compare to them?
Apache WSRF was at beta stage at the moment the paper was published.
2. Could we state that WSRF and WSN are in essence the observer design pattern? If not, why? If yes what are the differences?
Basically it is like the observer pattern, with the difference that in the observer pattern the whole state of the subject is publish, while in this architecture you can select partial sections of the state to be published.
3. Any room for improvement in the presented “Generic service hosting environment architecture”? If there is any, what new features will have to be taken in consideration?
The lifetimeManagement could be divide it in create and destroy sections. Also the storage could be link to lifetimeManagent so de destruction of resources could be taken in consideration.
4. The paper compares the five different implementations for the perspectives of architecture, functionality, performance and standards compliance. Could this comparison be improved? (Presentation, add another perspective like usability…)
Adding another perspective like usability will involve a lot of changes. And actually, there is a paper mentioned by the presenter that deals with this perspective exclusively.
5. Could you mention some real-life situations where transport-level security, and SecureConversation, SecureMessage protocols are used. Could you implement the functionality of one by using another?
It was mentioned by the presenter, that using the transform-level security you could “emulate” the functionality of SecureConversation and SecureMessage.
6. Persistence is used in the paper as “the state of a WS-resource after one invocation should be the same as its state before the next”, so persistence could be implemented by holding the states in memory. So if a system that implements persistence in memory is completely shutdown, it looses its persisted states and we are talking of a problem of “fault-tolerance” (e.g. backups). But if we use the term persistence as the characteristic of data that outlives the execution of the program that created it, we could say that some of these implementations may not have persistence! What is your opinion about this use of terms?
Persistence is only use within the context of the transaction, so the term is clear within this context.
7. The paper gives a vague description of GT4-C finding/discovering WS-resources features. Could you expand on this explanation?
The Presenter mentioned that the implementation provides interfaces that the user could modify and that they provide methods to find/discover resources.
8. In the lifetime management comparison, the paper cites the various methods to remove resources in the different implementations (deletion tasks, database updates, etc). Therefore giving particular preconditions, could we state what implementation has the best removal mechanism of expired resources?
Basically, for some of them we could but for some other implementations we can’t.
9. Ignoring the programming language preferences is it fair to choose one programming interface’s implementation as the best or the worst? If not, do we have a useful comparison?
It depends on the reader, but still is very difficult to determine which one is better or worst from the information presented in the paper.
10. In the performance comparison with no security GT4-Java and WSRF.net were “comparable”, but are the current settings of heap parameter in the JVM (Xms64MB and Xmx256MB) adequate giving the available memory in the servers?
Presenter mentioned that this may not be the best configuration for java. However .Net is more likely to be optimized since runs in a Windows 2003 server.
