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Figure 1. Three paths between an a baseline (r1, r2) and an input
(s1, s2). Each path corresponds to a different attribution method.
The path P2 corresponds to the path used by integrated gradients.

tifacts that stem from perturbing the data, a misbehaving
model, and a misbehaving attribution method. This was
why we turned to an axiomatic approach in designing a
good attribution method (Section 2). While our method
satisfies Sensitivity and Implementation Invariance, it cer-
tainly isn’t the unique method to do so.

We now justify the selection of the integrated gradients
method in two steps. First, we identify a class of meth-
ods called Path methods that generalize integrated gradi-
ents. We discuss that path methods are the only methods
to satisfy certain desirable axioms. Second, we argue why
integrated gradients is somehow canonical among the dif-
ferent path methods.

4.1. Path Methods

Integrated gradients aggregate the gradients along the in-
puts that fall on the straightline between the baseline and
the input. There are many other (non-straightline) paths
that monotonically interpolate between the two points, and
each such path will yield a different attribution method. For
instance, consider the simple case when the input is two di-
mensional. Figure 1 has examples of three paths, each of
which corresponds to a different attribution method.

Formally, let � = (�1, . . . , �n) : [0, 1] ! Rn be a smooth
function specifying a path in Rn from the baseline x0 to the
input x, i.e., �(0) = x0 and �(1) = x.

Given a path function �, path integrated gradients are ob-
tained by integrating the gradients along the path �(↵) for
↵ 2 [0, 1]. Formally, path integrated gradients along the
ith dimension for an input x is defined as follows.

PathIntegratedGrads�i (x) ::=

Z 1

↵=0

@F (�(↵))
@�i(↵)

@�i(↵)
@↵ d↵

(2)
where @F (x)

@xi
is the gradient of F along the ith dimension

at x.

Attribution methods based on path integrated gradients are

collectively known as path methods. Notice that integrated
gradients is a path method for the straightline path specified
�(↵) = x0 + ↵⇥ (x� x0) for ↵ 2 [0, 1].
Remark 3. All path methods satisfy Implementation In-

variance. This follows from the fact that they are defined

using the underlying gradients, which do not depend on the

implementation. They also satisfy Completeness (the proof

is similar to that of Proposition 1) and Sensitvity(a) which

is implied by Completeness (see Remark 2).

More interestingly, path methods are the only methods
that satisfy certain desirable axioms. (For formal defini-
tions of the axioms and proof of Proposition 2, see Fried-
man (Friedman, 2004).)

Axiom: Sensitivity(b). (called Dummy in (Friedman,
2004)) If the function implemented by the deep network
does not depend (mathematically) on some variable, then
the attribution to that variable is always zero.

This is a natural complement to the definition of Sensitiv-
ity(a) from Section 2. This definition captures desired in-
sensitivity of the attributions.

Axiom: Linearity. Suppose that we linearly composed
two deep networks modeled by the functions f1 and f2 to
form a third network that models the function a⇥f1+b⇥f2,
i.e., a linear combination of the two networks. Then we’d
like the attributions for a⇥ f1 + b⇥ f2 to be the weighted
sum of the attributions for f1 and f2 with weights a and b
respectively. Intuitively, we would like the attributions to
preserve any linearity within the network.
Proposition 2. (Theorem 1 (Friedman, 2004)) Path meth-

ods are the only attribution methods that always satisfy

Implementation Invariance, Sensitivity(b), Linearity, and

Completeness.

Remark 4. We note that these path integrated gradients

have been used within the cost-sharing literature in eco-

nomics where the function models the cost of a project as

a function of the demands of various participants, and the

attributions correspond to cost-shares. Integrated gradi-

ents correspond to a cost-sharing method called Aumann-

Shapley (Aumann & Shapley, 1974). Proposition 2 holds

for our attribution problem because mathematically the

cost-sharing problem corresponds to the attribution prob-

lem with the benchmark fixed at the zero vector. (Imple-

mentation Invariance is implicit in the cost-sharing litera-

ture as the cost functions are considered directly in their

mathematical form.)

4.2. Integrated Gradients is Symmetry-Preserving

In this section, we formalize why the straightline path cho-
sen by integrated gradients is canonical. First, observe that
it is the simplest path that one can define mathematically.
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Attributions of a DNN to its input features

• Given a DNN F : Rn → [0,1] 
• and an input x = (x1,...,xn) ∈ Rn,

• an attribution for input x relative to a baseline input x0

• vector AF(x, x0) = (a1,...,an) ∈ Rn 

• Here, ai is the contribution of xi to the prediction F(x).
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Why choose a baseline?

• Humans often perform attribution by exploiting
• counterfactual intuition. 

• Blame a feature è absence of feature is a baseline
• Here, absence of feature described using a single baseline input. 
• DNNs: natural baseline 
• An input where the DNN is “neutral”. 

• E.g. object recognition networks
• Black image 
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Axiom 1: Sensitivity

• For an input and a baseline differing in 1 feature F
• with divergent predictions t,
• the feature F must have a non-zero attribution. 

• f(x) = 1 − ReLU(1−x) 
• Baseline: x = 0 

• f is 0
• Input: x = 2 

• f is 1
• Gradient methods assign 0 attribution to x

• as the function is flat at x=2 
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Axiom 1: Sensitivity

• For x1 >1, output decreases linearly as x2 increases from 0 to x1 − 1. 
• Yet, for all inputs, both of these assign 0 attribution for x2
• Deconvolutional networks
• Guided back-propagation 
• back-propagated signal at ReLU(x2) is less than 0 

• and is therefore not back-propagated through the ReLU operation 
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A. Proof of Theorem 1

Proof. Consider a non-straightline path � : [0, 1] ! Rn

from baseline to input. W.l.o.g., there exists t0 2 [0, 1]
such that for two dimensions i, j, �i(t0) > �j(t0). Let
(t1, t2) be the maximum real open interval containing t0
such that �i(t) > �j(t) for all t in (t1, t2), and let a =
�i(t1) = �j(t1), and b = �i(t2) = �j(t2). Define function
f : x 2 [0, 1]n ! R as 0 if min(xi, xj)  a, as (b � a)2

if max(xi, xj) � b, and as (xi � a)(xj � a) otherwise.
Next we compute the attributions of f at x = h1, . . . , 1in
with baseline x0 = h0, . . . , 0in. Note that xi and xj are
symmetric, and should get identical attributions. For t /2
[t1, t2], the function is a constant, and the attribution of f
is zero to all variables, while for t 2 (t1, t2), the integrand
of attribution of f is �j(t) � a to xi, and �i(t) � a to xj ,
where the latter is always strictly larger by our choice of
the interval. Integrating, it follows that xj gets a larger
attribution than xi, contradiction.

B. Attribution Counter-Examples

We show that the methods DeepLift and Layer-wise rel-
evance propagation (LRP) break the implementation in-
variance axiom, and the Deconvolution and Guided back-
propagation methods break the sensitivity axiom.

Figure 7 provides an example of two equivalent networks

Network f(x1, x2)
Attributions at x1 = 3, x2 = 1

Integrated gradients x1 = 1.5, x2 = �0.5
DeepLift x1 = 1.5, x2 = �0.5
LRP x1 = 1.5, x2 = �0.5

Network g(x1, x2)
Attributions at x1 = 3, x2 = 1

Integrated gradients x1 = 1.5, x2 = �0.5
DeepLift x1 = 2, x2 = �1
LRP x1 = 2, x2 = �1

Figure 7. Attributions for two functionally equivalent net-

works. The figure shows attributions for two functionally equiva-
lent networks f(x1, x2) and g(x1, x2) at the input x1 = 3, x2 =
1 using integrated gradients, DeepLift (Shrikumar et al., 2016),
and Layer-wise relevance propagation (LRP) (Binder et al.,
2016). The reference input for Integrated gradients and DeepLift
is x1 = 0, x2 = 0. All methods except integrated gradients
provide different attributions for the two networks.

f(x1, x2) and g(x1, x2) for which DeepLift and LRP yield
different attributions.

First, observe that the networks f and g are of the
form f(x1, x2) = ReLU(h(x1, x2)) and f(x1, x2) =
ReLU(k(x1, x2))3, where

h(x1, x2) = ReLU(x1)� 1� ReLU(x2)
k(x1, x2) = ReLU(x1 � 1)� ReLU(x2)

Note that h and k are not equivalent. They have differ-
ent values whenever x1 < 1. But f and g are equivalent.
To prove this, suppose for contradiction that f and g are
different for some x1, x2. Then it must be the case that
ReLU(x1)� 1 6= ReLU(x1 � 1). This happens only when
x1 < 1, which implies that f(x1, x2) = g(x1, x2) = 0.

Now we leverage the above example to show that Deconvo-
lution and Guided back-propagation break sensitivity. Con-
sider the network f(x1, x2) from Figure 7. For a fixed
value of x1 greater than 1, the output decreases linearly
as x2 increases from 0 to x1 � 1. Yet, for all inputs, De-
convolutional networks and Guided back-propagation re-
sults in zero attribution for x2. This happens because for
all inputs the back-propagated signal received at the node
ReLU(x2) is negative and is therefore not back-propagated
through the ReLU operation (per the rules of deconvolu-
tion and guided back-propagation; see (Springenberg et al.,
2014) for details). As a result, the feature x2 receives zero

3 ReLU(x) is defined as max(x, 0).
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Axiom 2: Implementation Invariance

• Chain rule does not hold for discrete gradients
• DepLIFT and LRP use discrete gradients to tackle sensitivity.
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DeepLIFT and LRP break Axiom 2
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2016). The reference input for Integrated gradients and DeepLift
is x1 = 0, x2 = 0. All methods except integrated gradients
provide different attributions for the two networks.

f(x1, x2) and g(x1, x2) for which DeepLift and LRP yield
different attributions.

First, observe that the networks f and g are of the
form f(x1, x2) = ReLU(h(x1, x2)) and f(x1, x2) =
ReLU(k(x1, x2))3, where

h(x1, x2) = ReLU(x1)� 1� ReLU(x2)
k(x1, x2) = ReLU(x1 � 1)� ReLU(x2)

Note that h and k are not equivalent. They have differ-
ent values whenever x1 < 1. But f and g are equivalent.
To prove this, suppose for contradiction that f and g are
different for some x1, x2. Then it must be the case that
ReLU(x1)� 1 6= ReLU(x1 � 1). This happens only when
x1 < 1, which implies that f(x1, x2) = g(x1, x2) = 0.

Now we leverage the above example to show that Deconvo-
lution and Guided back-propagation break sensitivity. Con-
sider the network f(x1, x2) from Figure 7. For a fixed
value of x1 greater than 1, the output decreases linearly
as x2 increases from 0 to x1 � 1. Yet, for all inputs, De-
convolutional networks and Guided back-propagation re-
sults in zero attribution for x2. This happens because for
all inputs the back-propagated signal received at the node
ReLU(x2) is negative and is therefore not back-propagated
through the ReLU operation (per the rules of deconvolu-
tion and guided back-propagation; see (Springenberg et al.,
2014) for details). As a result, the feature x2 receives zero

3 ReLU(x) is defined as max(x, 0).

Different only when 𝑥! < 1 , but then f=g=0.



Integrated Gradients

• Merge the two
• Implementation Invariance of Gradients
• Sensitivity of LRP or DeepLift. 

• In practice, 20 to 300 discrete samples approximate the integral 
• within 5%. 

8

Axiomatic Attribution for Deep Networks

fortunately, the chain rule does not hold for discrete gra-
dients in general. Formally f(x1)�f(x0)

g(x1)�g(x0)
6= f(x1)�f(x0)

h(x1)�h(x0)
·

h(x1)�h(x0)
g(x1)�g(x0)

, and therefore these methods fail to satisfy im-
plementation invariance.

If an attribution method fails to satisfy Implementation In-
variance, the attributions are potentially sensitive to unim-
portant aspects of the models. For instance, if the network
architecture has more degrees of freedom than needed to
represent a function then there may be two sets of values
for the network parameters that lead to the same function.
The training procedure can converge at either set of values
depending on the initializtion or for other reasons, but the
underlying network function would remain the same. It is
undesirable that attributions differ for such reasons.

3. Our Method: Integrated Gradients

We are now ready to describe our technique. Intuitively,
our technique combines the Implementation Invariance of
Gradients along with the Sensitivity of techniques like LRP
or DeepLift.

Formally, suppose we have a function F : Rn ! [0, 1] that
represents a deep network. Specifically, let x 2 Rn be the
input at hand, and x0 2 Rn be the baseline input. For image
networks, the baseline could be the black image, while for
text models it could be the zero embedding vector.

We consider the straightline path (in Rn) from the baseline
x0 to the input x, and compute the gradients at all points
along the path. Integrated gradients are obtained by cu-
mulating these gradients. Specifically, integrated gradients
are defined as the path intergral of the gradients along the
straightline path from the baseline x0 to the input x.

The integrated gradient along the ith dimension for an input
x and baseline x0 is defined as follows. Here, @F (x)

@xi
is the

gradient of F (x) along the ith dimension.

IntegratedGradsi(x) ::= (xi�x0
i)⇥

Z 1

↵=0

@F (x0+↵⇥(x�x0))
@xi

d↵

(1)
Axiom: Completeness. Integrated gradients satisfy an

axiom called completeness that the attributions add up to
the difference between the output of F at the input x and
the baseline x0. This axiom is identified as being desirable
by Deeplift and LRP. It is a sanity check that the attribu-
tion method is somewhat comprehensive in its accounting,
a property that is clearly desirable if the networks score is
used in a numeric sense, and not just to pick the top la-
bel, for e.g., a model estimating insurance premiums from
credit features of individuals.

This is formalized by the proposition below, which instanti-
ates the fundamental theorem of calculus for path integrals.

Proposition 1. If F : Rn ! R is differentiable almost

everywhere
1

then

⌃n
i=1IntegratedGradsi(x) = F (x)� F (x0)

For most deep networks, it is possible to choose a base-
line such that the prediction at the baseline is near zero
(F (x0) ⇡ 0). (For image models, the black image base-
line indeed satisfies this property.) In such cases, there is
an intepretation of the resulting attributions that ignores the
baseline and amounts to distributing the output to the indi-
vidual input features.

Remark 2. Integrated gradients satisfies Sensivity(a) be-

cause Completeness implies Sensivity(a) and is thus a

strengthening of the Sensitivity(a) axiom. This is because

Sensitivity(a) refers to a case where the baseline and the

input differ only in one variable, for which Completeness

asserts that the difference in the two output values is equal

to the attribution to this variable. Attributions generated

by integrated gradients satisfy Implementation Invariance

since they are based only on the gradients of the function

represented by the network.

4. Uniqueness of Integrated Gradients

Prior literature has relied on empirically evaluating the at-
tribution technique. For instance, in the context of an object
recognition task, (Samek et al., 2015) suggests that we se-
lect the top k pixels by attribution and randomly vary their
intensities and then measure the drop in score. If the at-
tribution method is good, then the drop in score should be
large. However, the images resulting from pixel perturba-
tion could be unnatural, and it could be that the scores drop
simply because the network has never seen anything like it
in training. (This is less of a concern with linear or logis-
tic models where the simplicity of the model ensures that
ablating a feature does not cause strange interactions.)

A different evaluation technique considers images with
human-drawn bounding boxes around objects, and com-
putes the percentage of pixel attribution inside the box.
While for most objects, one would expect the pixels located
on the object to be most important for the prediction, in
some cases the context in which the object occurs may also
contribute to the prediction. The cabbage butterfly image
from Figure 2 is a good example of this where the pixels
on the leaf are also surfaced by the integrated gradients.

Roughly, we found that every empirical evaluation tech-
nique we could think of could not differentiate between ar-

1Formally, this means the function F is continuous every-
where and the partial derivative of F along each input dimension
satisfies Lebesgue’s integrability condition, i.e., the set of discon-
tinuous points has measure zero. Deep networks built out of Sig-
moids, ReLUs, and pooling operators satisfy this condition.

Input Baseline Model output w.r.t. feature i



Fundamental Theorem of Calculus
• Let f be a real-valued function on a [a, b]

• Let F be an antiderivative of f in (a, b) i.e. 
𝐹′(𝑥) = 𝑓(𝑥)

• If f is Riemann integrable on [a, b] then

∫!
" 𝑓 𝑥 𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
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Integrated Gradients - Completeness

• If F : Rn → R is differentiable almost everywhere,

• Completeness                                 Sensitivity 
• Gradients                                         Implementation-Invariance
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fortunately, the chain rule does not hold for discrete gra-
dients in general. Formally f(x1)�f(x0)

g(x1)�g(x0)
6= f(x1)�f(x0)

h(x1)�h(x0)
·

h(x1)�h(x0)
g(x1)�g(x0)

, and therefore these methods fail to satisfy im-
plementation invariance.

If an attribution method fails to satisfy Implementation In-
variance, the attributions are potentially sensitive to unim-
portant aspects of the models. For instance, if the network
architecture has more degrees of freedom than needed to
represent a function then there may be two sets of values
for the network parameters that lead to the same function.
The training procedure can converge at either set of values
depending on the initializtion or for other reasons, but the
underlying network function would remain the same. It is
undesirable that attributions differ for such reasons.

3. Our Method: Integrated Gradients

We are now ready to describe our technique. Intuitively,
our technique combines the Implementation Invariance of
Gradients along with the Sensitivity of techniques like LRP
or DeepLift.

Formally, suppose we have a function F : Rn ! [0, 1] that
represents a deep network. Specifically, let x 2 Rn be the
input at hand, and x0 2 Rn be the baseline input. For image
networks, the baseline could be the black image, while for
text models it could be the zero embedding vector.

We consider the straightline path (in Rn) from the baseline
x0 to the input x, and compute the gradients at all points
along the path. Integrated gradients are obtained by cu-
mulating these gradients. Specifically, integrated gradients
are defined as the path intergral of the gradients along the
straightline path from the baseline x0 to the input x.

The integrated gradient along the ith dimension for an input
x and baseline x0 is defined as follows. Here, @F (x)

@xi
is the

gradient of F (x) along the ith dimension.

IntegratedGradsi(x) ::= (xi�x0
i)⇥

Z 1

↵=0

@F (x0+↵⇥(x�x0))
@xi

d↵

(1)
Axiom: Completeness. Integrated gradients satisfy an

axiom called completeness that the attributions add up to
the difference between the output of F at the input x and
the baseline x0. This axiom is identified as being desirable
by Deeplift and LRP. It is a sanity check that the attribu-
tion method is somewhat comprehensive in its accounting,
a property that is clearly desirable if the networks score is
used in a numeric sense, and not just to pick the top la-
bel, for e.g., a model estimating insurance premiums from
credit features of individuals.

This is formalized by the proposition below, which instanti-
ates the fundamental theorem of calculus for path integrals.

Proposition 1. If F : Rn ! R is differentiable almost

everywhere
1

then

⌃n
i=1IntegratedGradsi(x) = F (x)� F (x0)

For most deep networks, it is possible to choose a base-
line such that the prediction at the baseline is near zero
(F (x0) ⇡ 0). (For image models, the black image base-
line indeed satisfies this property.) In such cases, there is
an intepretation of the resulting attributions that ignores the
baseline and amounts to distributing the output to the indi-
vidual input features.

Remark 2. Integrated gradients satisfies Sensivity(a) be-

cause Completeness implies Sensivity(a) and is thus a

strengthening of the Sensitivity(a) axiom. This is because

Sensitivity(a) refers to a case where the baseline and the

input differ only in one variable, for which Completeness

asserts that the difference in the two output values is equal

to the attribution to this variable. Attributions generated

by integrated gradients satisfy Implementation Invariance

since they are based only on the gradients of the function

represented by the network.

4. Uniqueness of Integrated Gradients

Prior literature has relied on empirically evaluating the at-
tribution technique. For instance, in the context of an object
recognition task, (Samek et al., 2015) suggests that we se-
lect the top k pixels by attribution and randomly vary their
intensities and then measure the drop in score. If the at-
tribution method is good, then the drop in score should be
large. However, the images resulting from pixel perturba-
tion could be unnatural, and it could be that the scores drop
simply because the network has never seen anything like it
in training. (This is less of a concern with linear or logis-
tic models where the simplicity of the model ensures that
ablating a feature does not cause strange interactions.)

A different evaluation technique considers images with
human-drawn bounding boxes around objects, and com-
putes the percentage of pixel attribution inside the box.
While for most objects, one would expect the pixels located
on the object to be most important for the prediction, in
some cases the context in which the object occurs may also
contribute to the prediction. The cabbage butterfly image
from Figure 2 is a good example of this where the pixels
on the leaf are also surfaced by the integrated gradients.

Roughly, we found that every empirical evaluation tech-
nique we could think of could not differentiate between ar-

1Formally, this means the function F is continuous every-
where and the partial derivative of F along each input dimension
satisfies Lebesgue’s integrability condition, i.e., the set of discon-
tinuous points has measure zero. Deep networks built out of Sig-
moids, ReLUs, and pooling operators satisfy this condition.
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fortunately, the chain rule does not hold for discrete gra-
dients in general. Formally f(x1)�f(x0)

g(x1)�g(x0)
6= f(x1)�f(x0)

h(x1)�h(x0)
·

h(x1)�h(x0)
g(x1)�g(x0)

, and therefore these methods fail to satisfy im-
plementation invariance.

If an attribution method fails to satisfy Implementation In-
variance, the attributions are potentially sensitive to unim-
portant aspects of the models. For instance, if the network
architecture has more degrees of freedom than needed to
represent a function then there may be two sets of values
for the network parameters that lead to the same function.
The training procedure can converge at either set of values
depending on the initializtion or for other reasons, but the
underlying network function would remain the same. It is
undesirable that attributions differ for such reasons.

3. Our Method: Integrated Gradients

We are now ready to describe our technique. Intuitively,
our technique combines the Implementation Invariance of
Gradients along with the Sensitivity of techniques like LRP
or DeepLift.

Formally, suppose we have a function F : Rn ! [0, 1] that
represents a deep network. Specifically, let x 2 Rn be the
input at hand, and x0 2 Rn be the baseline input. For image
networks, the baseline could be the black image, while for
text models it could be the zero embedding vector.

We consider the straightline path (in Rn) from the baseline
x0 to the input x, and compute the gradients at all points
along the path. Integrated gradients are obtained by cu-
mulating these gradients. Specifically, integrated gradients
are defined as the path intergral of the gradients along the
straightline path from the baseline x0 to the input x.

The integrated gradient along the ith dimension for an input
x and baseline x0 is defined as follows. Here, @F (x)

@xi
is the

gradient of F (x) along the ith dimension.

IntegratedGradsi(x) ::= (xi�x0
i)⇥

Z 1

↵=0

@F (x0+↵⇥(x�x0))
@xi

d↵

(1)
Axiom: Completeness. Integrated gradients satisfy an

axiom called completeness that the attributions add up to
the difference between the output of F at the input x and
the baseline x0. This axiom is identified as being desirable
by Deeplift and LRP. It is a sanity check that the attribu-
tion method is somewhat comprehensive in its accounting,
a property that is clearly desirable if the networks score is
used in a numeric sense, and not just to pick the top la-
bel, for e.g., a model estimating insurance premiums from
credit features of individuals.

This is formalized by the proposition below, which instanti-
ates the fundamental theorem of calculus for path integrals.

Proposition 1. If F : Rn ! R is differentiable almost

everywhere
1

then

⌃n
i=1IntegratedGradsi(x) = F (x)� F (x0)

For most deep networks, it is possible to choose a base-
line such that the prediction at the baseline is near zero
(F (x0) ⇡ 0). (For image models, the black image base-
line indeed satisfies this property.) In such cases, there is
an intepretation of the resulting attributions that ignores the
baseline and amounts to distributing the output to the indi-
vidual input features.

Remark 2. Integrated gradients satisfies Sensivity(a) be-

cause Completeness implies Sensivity(a) and is thus a

strengthening of the Sensitivity(a) axiom. This is because

Sensitivity(a) refers to a case where the baseline and the

input differ only in one variable, for which Completeness

asserts that the difference in the two output values is equal

to the attribution to this variable. Attributions generated

by integrated gradients satisfy Implementation Invariance

since they are based only on the gradients of the function

represented by the network.

4. Uniqueness of Integrated Gradients

Prior literature has relied on empirically evaluating the at-
tribution technique. For instance, in the context of an object
recognition task, (Samek et al., 2015) suggests that we se-
lect the top k pixels by attribution and randomly vary their
intensities and then measure the drop in score. If the at-
tribution method is good, then the drop in score should be
large. However, the images resulting from pixel perturba-
tion could be unnatural, and it could be that the scores drop
simply because the network has never seen anything like it
in training. (This is less of a concern with linear or logis-
tic models where the simplicity of the model ensures that
ablating a feature does not cause strange interactions.)

A different evaluation technique considers images with
human-drawn bounding boxes around objects, and com-
putes the percentage of pixel attribution inside the box.
While for most objects, one would expect the pixels located
on the object to be most important for the prediction, in
some cases the context in which the object occurs may also
contribute to the prediction. The cabbage butterfly image
from Figure 2 is a good example of this where the pixels
on the leaf are also surfaced by the integrated gradients.

Roughly, we found that every empirical evaluation tech-
nique we could think of could not differentiate between ar-

1Formally, this means the function F is continuous every-
where and the partial derivative of F along each input dimension
satisfies Lebesgue’s integrability condition, i.e., the set of discon-
tinuous points has measure zero. Deep networks built out of Sig-
moids, ReLUs, and pooling operators satisfy this condition.



General Path Methods
• Let γ = (γ1,...,γn) : [0,1] → Rn be a smooth function 

• specifying a path in Rn 

• from baseline x0 to input x, 
• i.e., γ(0) = x0 and γ(1) = x.

• All path methods satisfy Sensitivity and Implementation Invariance
• Integrated Gradients (IG) is a path method for the straight-line path

• γ(α) = x0 + α × (x − x0) 
• for α ∈ [0,1]. 
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Figure 1. Three paths between an a baseline (r1, r2) and an input
(s1, s2). Each path corresponds to a different attribution method.
The path P2 corresponds to the path used by integrated gradients.

tifacts that stem from perturbing the data, a misbehaving
model, and a misbehaving attribution method. This was
why we turned to an axiomatic approach in designing a
good attribution method (Section 2). While our method
satisfies Sensitivity and Implementation Invariance, it cer-
tainly isn’t the unique method to do so.

We now justify the selection of the integrated gradients
method in two steps. First, we identify a class of meth-
ods called Path methods that generalize integrated gradi-
ents. We discuss that path methods are the only methods
to satisfy certain desirable axioms. Second, we argue why
integrated gradients is somehow canonical among the dif-
ferent path methods.

4.1. Path Methods

Integrated gradients aggregate the gradients along the in-
puts that fall on the straightline between the baseline and
the input. There are many other (non-straightline) paths
that monotonically interpolate between the two points, and
each such path will yield a different attribution method. For
instance, consider the simple case when the input is two di-
mensional. Figure 1 has examples of three paths, each of
which corresponds to a different attribution method.

Formally, let � = (�1, . . . , �n) : [0, 1] ! Rn be a smooth
function specifying a path in Rn from the baseline x0 to the
input x, i.e., �(0) = x0 and �(1) = x.

Given a path function �, path integrated gradients are ob-
tained by integrating the gradients along the path �(↵) for
↵ 2 [0, 1]. Formally, path integrated gradients along the
ith dimension for an input x is defined as follows.

PathIntegratedGrads�i (x) ::=

Z 1

↵=0

@F (�(↵))
@�i(↵)

@�i(↵)
@↵ d↵

(2)
where @F (x)

@xi
is the gradient of F along the ith dimension

at x.

Attribution methods based on path integrated gradients are

collectively known as path methods. Notice that integrated
gradients is a path method for the straightline path specified
�(↵) = x0 + ↵⇥ (x� x0) for ↵ 2 [0, 1].
Remark 3. All path methods satisfy Implementation In-

variance. This follows from the fact that they are defined

using the underlying gradients, which do not depend on the

implementation. They also satisfy Completeness (the proof

is similar to that of Proposition 1) and Sensitvity(a) which

is implied by Completeness (see Remark 2).

More interestingly, path methods are the only methods
that satisfy certain desirable axioms. (For formal defini-
tions of the axioms and proof of Proposition 2, see Fried-
man (Friedman, 2004).)

Axiom: Sensitivity(b). (called Dummy in (Friedman,
2004)) If the function implemented by the deep network
does not depend (mathematically) on some variable, then
the attribution to that variable is always zero.

This is a natural complement to the definition of Sensitiv-
ity(a) from Section 2. This definition captures desired in-
sensitivity of the attributions.

Axiom: Linearity. Suppose that we linearly composed
two deep networks modeled by the functions f1 and f2 to
form a third network that models the function a⇥f1+b⇥f2,
i.e., a linear combination of the two networks. Then we’d
like the attributions for a⇥ f1 + b⇥ f2 to be the weighted
sum of the attributions for f1 and f2 with weights a and b
respectively. Intuitively, we would like the attributions to
preserve any linearity within the network.
Proposition 2. (Theorem 1 (Friedman, 2004)) Path meth-

ods are the only attribution methods that always satisfy

Implementation Invariance, Sensitivity(b), Linearity, and

Completeness.

Remark 4. We note that these path integrated gradients

have been used within the cost-sharing literature in eco-

nomics where the function models the cost of a project as

a function of the demands of various participants, and the

attributions correspond to cost-shares. Integrated gradi-

ents correspond to a cost-sharing method called Aumann-

Shapley (Aumann & Shapley, 1974). Proposition 2 holds

for our attribution problem because mathematically the

cost-sharing problem corresponds to the attribution prob-

lem with the benchmark fixed at the zero vector. (Imple-

mentation Invariance is implicit in the cost-sharing litera-

ture as the cost functions are considered directly in their

mathematical form.)

4.2. Integrated Gradients is Symmetry-Preserving

In this section, we formalize why the straightline path cho-
sen by integrated gradients is canonical. First, observe that
it is the simplest path that one can define mathematically.



Additional Axioms satisfied by Path Methods
• Axiom Dummy:
• If a DNN does not depend on a variable X, 
• then the attribution to the variable X is zero. 

• Axiom Linearity
• If we linearly compose 2 DNNs f1 and f2 to form a third DNN a f1 + b f2 
• Then the attributions for the new DNN

• should be the weighted sum of the attributions for f1 and f2 
• with weights a and b respectively. 

• Path methods are the only attribution methods satisfying
• Implementation Invariance
• Dummy,
• Linearity, 
• Completeness. 
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Symmetry Preserving Path Methods = IG 
• Integrated gradients (IG) is the unique general path method that 

respects symmetry-preserving. 
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Figure 1. Three paths between an a baseline (r1, r2) and an input
(s1, s2). Each path corresponds to a different attribution method.
The path P2 corresponds to the path used by integrated gradients.

tifacts that stem from perturbing the data, a misbehaving
model, and a misbehaving attribution method. This was
why we turned to an axiomatic approach in designing a
good attribution method (Section 2). While our method
satisfies Sensitivity and Implementation Invariance, it cer-
tainly isn’t the unique method to do so.

We now justify the selection of the integrated gradients
method in two steps. First, we identify a class of meth-
ods called Path methods that generalize integrated gradi-
ents. We discuss that path methods are the only methods
to satisfy certain desirable axioms. Second, we argue why
integrated gradients is somehow canonical among the dif-
ferent path methods.

4.1. Path Methods

Integrated gradients aggregate the gradients along the in-
puts that fall on the straightline between the baseline and
the input. There are many other (non-straightline) paths
that monotonically interpolate between the two points, and
each such path will yield a different attribution method. For
instance, consider the simple case when the input is two di-
mensional. Figure 1 has examples of three paths, each of
which corresponds to a different attribution method.

Formally, let � = (�1, . . . , �n) : [0, 1] ! Rn be a smooth
function specifying a path in Rn from the baseline x0 to the
input x, i.e., �(0) = x0 and �(1) = x.

Given a path function �, path integrated gradients are ob-
tained by integrating the gradients along the path �(↵) for
↵ 2 [0, 1]. Formally, path integrated gradients along the
ith dimension for an input x is defined as follows.

PathIntegratedGrads�i (x) ::=

Z 1

↵=0

@F (�(↵))
@�i(↵)

@�i(↵)
@↵ d↵

(2)
where @F (x)

@xi
is the gradient of F along the ith dimension

at x.

Attribution methods based on path integrated gradients are

collectively known as path methods. Notice that integrated
gradients is a path method for the straightline path specified
�(↵) = x0 + ↵⇥ (x� x0) for ↵ 2 [0, 1].
Remark 3. All path methods satisfy Implementation In-

variance. This follows from the fact that they are defined

using the underlying gradients, which do not depend on the

implementation. They also satisfy Completeness (the proof

is similar to that of Proposition 1) and Sensitvity(a) which

is implied by Completeness (see Remark 2).

More interestingly, path methods are the only methods
that satisfy certain desirable axioms. (For formal defini-
tions of the axioms and proof of Proposition 2, see Fried-
man (Friedman, 2004).)

Axiom: Sensitivity(b). (called Dummy in (Friedman,
2004)) If the function implemented by the deep network
does not depend (mathematically) on some variable, then
the attribution to that variable is always zero.

This is a natural complement to the definition of Sensitiv-
ity(a) from Section 2. This definition captures desired in-
sensitivity of the attributions.

Axiom: Linearity. Suppose that we linearly composed
two deep networks modeled by the functions f1 and f2 to
form a third network that models the function a⇥f1+b⇥f2,
i.e., a linear combination of the two networks. Then we’d
like the attributions for a⇥ f1 + b⇥ f2 to be the weighted
sum of the attributions for f1 and f2 with weights a and b
respectively. Intuitively, we would like the attributions to
preserve any linearity within the network.
Proposition 2. (Theorem 1 (Friedman, 2004)) Path meth-

ods are the only attribution methods that always satisfy

Implementation Invariance, Sensitivity(b), Linearity, and

Completeness.

Remark 4. We note that these path integrated gradients

have been used within the cost-sharing literature in eco-

nomics where the function models the cost of a project as

a function of the demands of various participants, and the

attributions correspond to cost-shares. Integrated gradi-

ents correspond to a cost-sharing method called Aumann-

Shapley (Aumann & Shapley, 1974). Proposition 2 holds

for our attribution problem because mathematically the

cost-sharing problem corresponds to the attribution prob-

lem with the benchmark fixed at the zero vector. (Imple-

mentation Invariance is implicit in the cost-sharing litera-

ture as the cost functions are considered directly in their

mathematical form.)

4.2. Integrated Gradients is Symmetry-Preserving

In this section, we formalize why the straightline path cho-
sen by integrated gradients is canonical. First, observe that
it is the simplest path that one can define mathematically.

Image reproduced under fair use from 
https://arxiv.org/pdf/1703.01365.pdf
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Symmetry Preserving Path Methods = IG 
• Consider a non-straightline path γ : [0,1] → Rn from baseline to input. 
• WLOG, there exists t0 ∈ [0,1] such that for two dimensions i,j, γi(t0) > 

γj(t0). 
• Otherwise, it is a straight line!

• Let (t1,t2) be the maximum real open interval containing t0 
• such that γi(t) > γj(t) for all t in (t1,t2), and 

• Then let a = γi(t1) = γj(t1), and b = γi(t2) = γj(t2). 
• Define function f : x ∈ [0,1]n → R as 
• 0 if min(xi,xj) ≤ a, 
• (b − a)2 if max(xi,xj) ≥ b, 
• (xi − a)(xj − a) otherwise. 

• Note that f is symmetric w.r.t. xi and xj
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• Consider a non-straightline path γ : [0,1] → Rn from baseline to input. 
• Let (t1,t2) be the maximum real open interval containing t0 such that γi(t) > 

γj(t) for all t in (t1,t2), and let a = γi(t1) = γj(t1), and b = γi(t2) = γj(t2). 
• Define function f : x ∈ [0,1]n → R as 

• 0 if min(xi,xj) ≤ a, 
• (b − a)2 if max(xi,xj) ≥ b, 
• (xi − a)(xj − a) otherwise. 

• Compute attributions of f at x = 1,...,1 with baseline x0 = 0,...,0. 
• Recall function f : x ∈ [0,1]n → R as 

• 0 if min(xi,xj) ≤ a, 
• (b − a)2 if max(xi,xj) ≥ b, 

• (xi − a)(xj − a) otherwise. 

• Integrating, it follows that xj gets a larger attribution than xi, contradiction 
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• the function is a constant
• the attribution of f is zero to all variables

• the integrand of attribution of f is 
• γj(t) − a to xi, and 
• γi(t) − a to xj
• one is larger than the other by our design.



Experimental Results - I
• GoogLeNet
• ImageNet
• Black image as baseline
• Diabetic retinopathy
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could also be batched. In practice, we find that somewhere
between 20 and 300 steps are enough to approximate the
integral (within 5%); we recommend that developers check

that the attributions approximately adds up to the differ-
ence beween the score at the input and that at the baseline
(cf. Proposition 1), and if not increase the step-size m.

6. Applications

The integrated gradients technique is applicable to a variety
of deep networks. Here, we apply it to two image models,
two natural language models, and a chemistry model.

6.1. An Object Recognition Network

We study feature attribution in an object recognition net-
work built using the GoogleNet architecture (Szegedy
et al., 2014) and trained over the ImageNet object recog-
nition dataset (Russakovsky et al., 2015). We use the inte-
grated gradients method to study pixel importance in pre-
dictions made by this network. The gradients are computed
for the output of the highest-scoring class with respect to
pixel of the input image. The baseline input is the black
image, i.e., all pixel intensities are zero.

Integrated gradients can be visualized by aggregating them
along the color channel and scaling the pixels in the ac-
tual image by them. Figure 2 shows visualizations for a
bunch of images2. For comparison, it also presents the cor-
responding visualization obtained from the product of the
image with the gradients at the actual image. Notice that
integrated gradients are better at reflecting distinctive fea-
tures of the input image.

6.2. Diabetic Retinopathy Prediction

Diabetic retinopathy (DR) is a complication of the diabetes
that affects the eyes. Recently, a deep network (Gulshan
et al., 2016) has been proposed to predict the severity grade
for DR in retinal fundus images. The model has good pre-
dictive accuracy on various validation datasets.

We use integrated gradients to study feature importance for
this network; like in the object recognition case, the base-
line is the black image. Feature importance explanations
are important for this network as retina specialists may use
it to build trust in the network’s predictions, decide the
grade for borderline cases, and obtain insights for further
testing and screening.

Figure 3 shows a visualization of integrated gradients for a
retinal fundus image. The visualization method is a bit dif-
ferent from that used in Figure 2. We aggregate integrated
gradients along the color channel and overlay them on the

2More examples can be found at https://github.com/
ankurtaly/Attributions

Figure 2. Comparing integrated gradients with gradients at

the image. Left-to-right: original input image, label and softmax
score for the highest scoring class, visualization of integrated gra-
dients, visualization of gradients*image. Notice that the visual-
izations obtained from integrated gradients are better at reflecting
distinctive features of the image.

actual image in gray scale with positive attribtutions along
the green channel and negative attributions along the red
channel. Notice that integrated gradients are localized to a
few pixels that seem to be lesions in the retina. The inte-
rior of the lesions receive a negative attribution while the
periphery receives a positive attribution indicating that the
network focusses on the boundary of the lesion.

Figure 3. Attribution for Diabetic Retinopathy grade predic-

tion from a retinal fundus image. The original image is show
on the left, and the attributions (overlayed on the original image
in gray scaee) is shown on the right. On the original image we an-
notate lesions visible to a human, and confirm that the attributions
indeed point to them.

Image reproduced under fair use from 
https://arxiv.org/pdf/1703.01365.pdf
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Experimental Results II

• Model for question classification 
• text categorization architecture 
• WikiTableQuestions dataset

• IG to attribute the question terms 
• Goal: Identify trigger phrases for answer 

type. 
• Baseline = 0 embedding vector. 
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6.3. Question Classification

Automatically answering natural language questions (over
semi-structured data) is an important problem in artificial
intelligence (AI). A common approach is to semantically
parse the question to its logical form (Liang, 2016) using
a set of human-authored grammar rules. An alternative ap-
proach is to machine learn an end-to-end model provided
there is enough training data. An interesting question is
whether one could peek inside machine learnt models to de-
rive new rules. We explore this direction for a sub-problem
of semantic parsing, called question classification, using
the method of integrated gradients.

The goal of question classification is to identify the type of
answer it is seeking. For instance, is the quesiton seek-
ing a yes/no answer, or is it seeking a date? Rules for
solving this problem look for trigger phrases in the ques-
tion, for e.g., a “when” in the beginning indicates a date
seeking question. We train a model for question classifica-
tion using the the text categorization architecture proposed
by (Kim, 2014) over the WikiTableQuestions dataset (Pasu-
pat & Liang, 2015). We use integrated gradients to attribute
predictions down to the question terms in order to identify
new trigger phrases for answer type. The baseline input is
the all zero embedding vector.

Figure 4 lists a few questions with constituent terms high-
lighted based on their attribution. Notice that the attri-
butions largely agree with commonly used rules, for e.g.,
“how many” indicates a numeric seeking question. In ad-
dition, attributions help identify novel question classifica-
tion rules, for e.g., questions containing “total number” are
seeking numeric answers. Attributions also point out unde-
sirable correlations, for e.g., “charles” is used as trigger for
a yes/no question.

Figure 4. Attributions from question classification model.

Term color indicates attribution strength—Red is positive, Blue is
negative, and Gray is neutral (zero). The predicted class is speci-
fied in square brackets.

6.4. Neural Machine Translation

We applied our technique to a complex, LSTM-based Neu-
ral Machine Translation System (Wu et al., 2016). We
attribute the output probability of every output token (in
form of wordpieces) to the input tokens. Such attributions
“align” the output sentence with the input sentence. For

baseline, we zero out the embeddings of all tokens except
the start and end markers. Figure 5 shows an example of
such an attribution-based alignments. We observed that the
results make intuitive sense. E.g. “und” is mostly attributed
to “and”, and “morgen” is mostly attributed to “morning”.
We use 100 � 1000 steps (cf. Section 5) in the integrated
gradient approximation; we need this because the network
is highly nonlinear.

Figure 5. Attributions from a language translation model. In-
put in English: “good morning ladies and gentlemen”. Output in
German: “Guten Morgen Damen und Herren”. Both input and
output are tokenized into word pieces, where a word piece pre-
fixed by underscore indicates that it should be the prefix of a word.

6.5. Chemistry Models

We apply integrated gradients to a network performing
Ligand-Based Virtual Screening which is the problem of
predicting whether an input molecule is active against a
certain target (e.g., protein or enzyme). In particular, we
consider a network based on the molecular graph convolu-
tion architecture proposed by (Kearnes et al., 2016).

The network requires an input molecule to be encoded by
hand as a set of atom and atom-pair features describing the
molecule as an undirected graph. Atoms are featurized us-
ing a one-hot encoding specifying the atom type (e.g., C, O,
S, etc.), and atom-pairs are featurized by specifying either
the type of bond (e.g., single, double, triple, etc.) between
the atoms, or the graph distance between them. The base-
line input is obtained zeroing out the feature vectors for
atom and atom-pairs.

We visualize integrated gradients as heatmaps over the the
atom and atom-pair features with the heatmap intensity de-
picting the strength of the contribution. Figure 6 shows
the visualization for a specific molecule. Since integrated
gradients add up to the final prediction score (see Proposi-
tion 1), the magnitudes can be use for accounting the con-
tributions of each feature. For instance, for the molecule in
the figure, atom-pairs that have a bond between them cu-
mulatively contribute to 46% of the prediction score, while
all other pairs cumulatively contribute to only �3%.

Image reproduced under fair use from 
https://arxiv.org/pdf/1703.01365.pdf
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Conclusions
• Primary contribution
• a new method called integrated gradients 
• Attribute a DNN prediction to its inputs
• Implemented using 10-1000 or so calls to the gradient operator
• Applied to a variety of deep networks.

• Secondary contribution 
• axiomatic framework
• cost-sharing from economics. 
• Axiomatic; hence, evaluation not strongly influence by

• data artifacts, 
• network’s artifacts
• artifacts of the method. 
• The axiomatic approach rules out artifacts of the last type.
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