Axiomatic Attribution for Deep Networks

Paper Authors: Mukund Sundararajan, Ankur Taly, Qiqi Yan

Attributions of a DNN to its input features

- Given a DNN $F: \mathbb{R}^n \to [0,1]$
- and an input $x = (x_1, ..., x_n) \in \mathbb{R}^{n_r}$
- an attribution for input x relative to a baseline input x^0
- vector $A_F(x, x^0) = (a_1, ..., a_n) \in \mathbb{R}^n$
- Here, a_i is the contribution of x_i to the prediction F(x).

Baehrens, David, Schroeter, Timon, Harmeling, Stefan, Kawanabe, Motoaki, Hansen, Katja, and Muller, Klaus-Robert.

How to explain individual classification decisions.

Journal of Machine Learning Research, pp. 1803–1831, 2010.

Why choose a baseline?

- Humans often perform attribution by exploiting
 - counterfactual intuition.
- Blame a feature absence of feature is a baseline
- Here, absence of feature described using a single baseline input.
- DNNs: natural baseline
 - An input where the DNN is "neutral".
- E.g. object recognition networks
 - Black image

Axiom 1: Sensitivity

- For an input and a baseline differing in 1 feature F
- with divergent predictions t,
- the feature F must have a non-zero attribution.
- $\bullet f(x) = 1 \text{ReLU}(1-x)$
- Baseline: x = 0
 - f is 0
- Input: x = 2
 - f is 1
- Gradient methods assign 0 attribution to x
 - as the function is flat at x=2

Axiom 1: Sensitivity

fair use from

https://arxiv.org/pdf/1703. 01365.pdf

Network $f(x_1, x_2)$

- For x1 > 1, output decreases linearly as x2 increases from 0 to x1 1.
- Yet, for all inputs, both of these assign 0 attribution for x2
 - Deconvolutional networks
 - Guided back-propagation
 - back-propagated signal at ReLU(x2) is less than 0
 - and is therefore not back-propagated through the ReLU operation

Axiom 2: Implementation Invariance

- Chain rule does not hold for discrete gradients
- DepLIFT and LRP use discrete gradients to tackle sensitivity.

DeepLIFT and LRP break Axiom 2

Network
$$f(x_1, x_2)$$

Attributions at
$$x_1 = 3, x_2 = 1$$

Integrated gradients
$$x_1 = 1.5, x_2 = -0.5$$

DeepLift $x_1 = 1.5, x_2 = -0.5$

LRP
$$x_1 = 1.5, x_2 = -0.5$$

Network
$$g(x_1, x_2)$$

Attributions at
$$x_1 = 3, x_2 = 1$$

Integrated gradients
$$x_1 = 1.5, x_2 = -0.5$$

DeepLift
$$x_1 = 2, x_2 = -1$$

LRP
$$x_1 = 2, x_2 = -1$$

$$h(x_1, x_2) = \text{ReLU}(x_1) - 1 - \text{ReLU}(x_2)$$

 $k(x_1, x_2) = \text{ReLU}(x_1 - 1) - \text{ReLU}(x_2)$

Different only when $x_1 < 1$, but then f=g=0.

Integrated Gradients

- Merge the two
 - Implementation Invariance of Gradients
 - Sensitivity of LRP or DeepLift.
- In practice, 20 to 300 discrete samples approximate the integral
 - within 5%.

Fundamental Theorem of Calculus

• Let f be a real-valued function on a [a, b]

• Let F be an antiderivative of f in (a, b) i.e.

$$F'(x) = f(x)$$

• If f is Riemann integrable on [a, b] then

$$\int_a^b f(x)dx = F(b) - F(a)$$

Integrated Gradients - Completeness

• If $F: \mathbb{R}^n \to \mathbb{R}$ is differentiable almost everywhere,

$$\sum_{i=1}^{n} \mathsf{IntegratedGrads}_i(x) = F(x) - F(x')$$

- Completeness
- Gradients

Sensitivity

Implementation-Invariance

General Path Methods

- Let $\gamma = (\gamma_1, ..., \gamma_n) : [0,1] \rightarrow \mathbb{R}^n$ be a smooth function
 - specifying a path in Rⁿ
 - from baseline x⁰ to input x,
 - i.e., $y(0) = x^0$ and y(1) = x.

$$\mathsf{PathIntegratedGrads}_i^\gamma(x) ::= \int_{\alpha=0}^1 \tfrac{\partial F(\gamma(\alpha))}{\partial \gamma_i(\alpha)} \, \tfrac{\partial \gamma_i(\alpha)}{\partial \alpha} \, d\alpha$$

- All path methods satisfy Sensitivity and Implementation Invariance
- Integrated Gradients (IG) is a path method for the straight-line path
 - $v(\alpha) = x^0 + \alpha \times (x x^0)$
 - for $\alpha \in [0,1]$.

Additional Axioms satisfied by Path Methods

- Axiom Dummy:
 - If a DNN does not depend on a variable X,
 - then the attribution to the variable X is zero.
- Axiom Linearity
 - If we linearly compose 2 DNNs f1 and f2 to form a third DNN a f1 + b f2
 - Then the attributions for the new DNN
 - should be the weighted sum of the attributions for f1 and f2
 - with weights a and b respectively.
- Path methods are the only attribution methods satisfying
 - Implementation Invariance
 - Dummy,
 - Linearity,
 - Completeness.

Friedman, Eric J. Paths and consistency in additive cost sharing. *International Journal of Game Theory*, 32(4): 501–518, 2004.

Aumann, R. J. and Shapley, L. S. *Values of Non-Atomic Games*. Princeton University Press, Princeton, NJ, 1974.

Symmetry Preserving Path Methods = IG

• Integrated gradients (IG) is the unique general path method that respects symmetry-preserving.

Symmetry Preserving Path Methods = IG

- Consider a non-straightline path $\gamma:[0,1]\to \mathbb{R}^n$ from baseline to input.
- WLOG, there exists $t_0 \in [0,1]$ such that for two dimensions $i,j, \gamma_i(t_0) > \gamma_i(t_0)$.
 - Otherwise, it is a straight line!
- Let (t_1,t_2) be the maximum real open interval containing t_0
 - such that $\gamma_i(t) > \gamma_i(t)$ for all t in (t_1, t_2) , and
- Then let $a = \gamma_i(t_1) = \gamma_j(t_1)$, and $b = \gamma_i(t_2) = \gamma_j(t_2)$.
- Define function $f: x \in [0,1]^n \to R$ as
 - 0 if $\min(x_i, x_i) \le a$,
 - $(b-a)^2$ if $\max(x_i, x_i) \ge b$,
 - $(x_i a)(x_i a)$ otherwise.
- Note that f is symmetric w.r.t. x_i and x_j

Symmetry Preserving Path Methods = IG

- Consider a non-straightline path $\gamma:[0,1]\to \mathbb{R}^n$ from baseline to input.
- Let (t_1, t_2) be the maximum real open interval containing t_0 such that $\gamma_i(t) > \gamma_j(t)$ for all t in (t_1, t_2) , and let $\alpha = \gamma_i(t_1) = \gamma_j(t_1)$, and $b = \gamma_i(t_2) = \gamma_j(t_2)$.
- Define function $f: x \in [0,1]^n \to R$ as
 - 0 if $\min(x_i, x_i) \le a$,
 - $(b-a)^2$ if $\max(x_i, x_i) \ge b$,
 - $(x_i a)(x_j a)$ otherwise.
- Compute attributions of f at x = 1,...,1 with baseline $x^0 = 0,...,0$.
- Recall function $f: x \in [0,1]^n \to R$ as
 - 0 if $min(x_i, x_i) \leq a$,
 - $(b-a)^2$ if $\max(x_i,x_i) \ge b$,
 - $(x_i a)(x_j a)$ otherwise.

- the function is a constant
- the attribution of *f* is zero to all variables
- the integrand of attribution of *f* is
- $y_i(t) a$ to x_i , and
- $y_i(t) a$ to x_j
- one is larger than the other by our design.
- Integrating, it follows that x_i gets a larger attribution than x_i , contradiction

Experimental Results - I

- GoogLeNet
- ImageNet
- Black image as baseline
- Diabetic retinopathy

Image reproduced under fair use from https://arxiv.org/pdf/1703.01365.pdf

Experimental Results II

- Model for question classification
 - text categorization architecture
 - WikiTableQuestions dataset
- IG to attribute the question terms
- Goal: Identify trigger phrases for answer type.
- Baseline = 0 embedding vector.

how many townships have a population above 50 ? [prediction: NUMERIC] what is the difference in population between fora and masilo [prediction: NUMERIC] how many athletes are not ranked ? [prediction: NUMERIC] what is the total number of points scored ? [prediction: NUMERIC] which film was before the audacity of democracy ? [prediction: STRING] which year did she work on the most films ? [prediction: DATETIME] what year was the last school established ? [prediction: DATETIME] when did ed sheeran get his first number one of the year ? [prediction: DATETIME] did charles oakley play more minutes than robert parish ? [prediction: YESNO]

IG Attributions for Language Translation

Image reproduced under fair use from

https://arxiv.org/pdf/1703.01365.pdf

Conclusions

- Primary contribution
 - a new method called integrated gradients
 - Attribute a DNN prediction to its inputs
 - Implemented using 10-1000 or so calls to the gradient operator
 - Applied to a variety of deep networks.
- Secondary contribution
 - axiomatic framework
 - cost-sharing from economics.
 - Axiomatic; hence, evaluation not strongly influence by
 - data artifacts,
 - network's artifacts
 - artifacts of the method.
 - The axiomatic approach rules out artifacts of the last type.