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Sharper sensitivity maps: removing noise by adding noise

Figure 10. Effect of noise level on the estimated gradient across 5 MNIST images. Each sensitivity map is obtained by applying a
Gaussian noise at inference time and averaging in the same way as in Fig. 3 over 100 samples.
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Motivation
• One kind of explanation: Identify pixels that lead to the DNN decision.
• Starting point
• Gradient of the class score or logit w.r.t. input. 
• Sort of a sensitivity map

• Two contributions
• SMOOTHGRAD

• visually sharper sensitivity maps
• Lessons in the visualization of these maps

• Artifacts
• Code
• Website
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Gradients as sensitivity maps 

• A DNN that classifies 
• an input image x
• into one class c 
• from a set C of possible classes

• DNN computes a class activation function Sc for each class c ∈ C
• The final classification 𝑐𝑙𝑎𝑠𝑠(𝑥) determined by the highest score. 
• That is, 

𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥c ∈ C 𝑆𝑐(𝑥)
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Gradients as sensitivity maps - II
• If class activation functions Sc are 

piecewise differentiable, 
• for any image 𝑥,
• construct a sensitivity map Mc(𝑥) by 

differentiating Mc w.r.t. the input 𝑥. 
𝑀𝑐(𝑥) = 𝜕𝑆𝑐(𝑥)/𝜕𝑥

• 𝑀𝑐 describes how a change in a pixel of 𝑥
impacts its label as class 𝑐

• Mathematically rigorous method of allocating 
importance to pixels

• Sensitivity maps of raw gradients are 
visually noisy
• Poor correlation with human expectation
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2. Gradients as sensitivity maps
Consider a system that classifies an image into one class
from a set C. Given an input image x, many image classifi-
cation networks (Szegedy et al., 2016; LeCun et al., 1998)
compute a class activation function Sc for each class c 2 C,
and the final classification class(x) is determined by which
class has the highest score. That is,

class(x) = argmaxc2C Sc(x)

A mathematically clean way of locating “important” pixels
in the input image has been proposed by several authors,
e.g., (Baehrens et al., 2010; Simonyan et al., 2013; Erhan
et al., 2009). If the functions Sc are piecewise differen-
tiable, for any image x one can construct a sensitivity map

Mc(x) simply by differentiating Mc with respect to the in-
put, x. In particular, we can define

Mc(x) = @Sc(x)/@x

Here @Sc represents the derivative (i.e. gradient) of Sc. In-
tuitively speaking, Mc represents how much difference a
tiny change in each pixel of x would make to the classifica-
tion score for class c. As a result, one might hope that the
resulting map Mc would highlight key regions.

In practice, the sensitivity map of a label does seem
to show a correlation with regions where that label is
present (Baehrens et al., 2010; Simonyan et al., 2013).
However, the sensitivity maps based on raw gradients are
typically visually noisy, as shown in Fig. 1. Moreover, as
this image shows, the correlations with regions a human
would pick out as meaningful are rough at best.

Figure 1. A noisy sensitivity map, based on the gradient of the
class score for gazelle for an image classification network. Lighter
pixels indicate partial derivatives with higher absolute values. See
Section 3 for details on the visualization.

2.1. Previous work on enhancing sensitivity maps

There are several hypotheses for the apparent noise in raw
gradient visualizations. One possibility, of course, is that

the maps are faithful descriptions of what the network is do-
ing. Perhaps certain pixels scattered, seemingly at random,
across the image are central to how the network is making
a decision. On the other hand, it is also possible that using
the raw gradient as a proxy for feature importance is not
optimal. Seeking better explanations of network decisions,
several prior works have proposed modifications to the ba-
sic technique of gradient sensitivity maps; we summarize a
few key examples here.

One issue with using the gradient as a measure of in-
fluence is that an important feature may “saturate” the
function Sc. In other words, it may have a strong effect
globally, but with a small derivative locally. Several ap-
proaches, Layerwise Relevance Propagation (Bach et al.,
2015), DeepLift (Shrikumar et al., 2017), and more recently
Integrated Gradients (Sundararajan et al., 2017), attempt to
address this potential problem by estimating the global im-
portance of each pixel, rather than local sensitivity. Maps
created with these techniques are referred to as “saliency”
or “pixel attribution” maps.

Another strategy for enhancing sensitivity maps has been
to change or extend the backpropagation algorithm itself,
with the goal of emphasizing positive contributions to the
final outcome. Two examples are the Deconvolution (Zeiler
& Fergus, 2014) and Guided Backpropagation (Springen-
berg et al., 2014) techniques, which modify the gradients
of ReLU functions by discarding negative values during the
backpropagation calculation. The intention is to perform a
type of “deconvolution” which will more clearly show fea-
tures that triggered activations of high-level units. Similar
ideas appear in (Selvaraju et al., 2016; Zhou et al., 2016),
which suggest ways to combine gradients of units at multi-
ple levels.

In what follows, we provide detailed comparisons of
“vanilla” gradient maps with those created by integrated
gradient methods and guided backpropagation. A note
on terminology: although the terms “sensitivity map”,
“saliency map”, and “pixel attribution map” have been used
in different contexts, in this paper, we will refer to these
methods collectively as “sensitivity maps.”

2.2. Smoothing noisy gradients

There is a possible explanation for the noise in sensitivity
maps, which to our knowledge has not been directly ad-
dressed in the literature: the derivative of the function Sc

may fluctuate sharply at small scales. In other words, the
apparent noise one sees in a sensitivity map may be due
to essentially meaningless local variations in partial deriva-
tives. After all, given typical training techniques there is
no reason to expect derivatives to vary smoothly. Indeed,
the networks in question typically are based on ReLU acti-
vation functions, so Sc generally will not even be continu-
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Enhanced sensitivity maps 
• Hypotheses for noisy raw gradients: 
• Honest to what the network has learned
• Not an effective proxy for feature importance

• Attempts at many sensitivity maps: 
• Features may “saturate”; strong effect globally, but with a small derivative 

locally. 
• Layerwise Relevance Propagation (Bach et al., 2015)
• DeepLift (Shrikumar et al., 2017)
• Integrated Gradients (Sundararajan et al., 2017)

• Extend backpropagation and emphasize positive contributions
• Modify gradients of ReLU discarding negative values during backpropagation

• Deconvolution (Zeiler & Fergus, 2014)
• Guided Backpropagation (Springenberg et al., 2014)
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Smoothing noisy gradients 
• Potential explanation

• the derivative of the class activation 
function Sc may fluctuate sharply

• essentially meaningless local 
variations in partial derivatives. 

• ReLU activations
• Sc not even continuously differentiable 

• Gradient of 𝑆𝑐 at any given point 
!"!
!#"
(𝑡) less meaningful than a local 

average of gradient values
• Smoothen 𝜕𝑆𝑐 with a Gaussian kernel
• Computing an average intractable

• High-dimensional inputs
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ously differentiable.

Fig. 2 gives example of strongly fluctuating partial deriva-
tives. This fixes a particular image x, and an image pixel
xi, and plots the values of @Sc

@xi
(t) as fraction of the maxi-

mum entry in the gradient vector, maxi
@Sc
@xi

(t), for a short
line segment x + t✏ in the space of images parameterized
by t 2 [0, 1]. We show it as a fraction of the maximum
entry in order to verify that the fluctuations are significant.
The length of this segment is small enough that the start-
ing image x and the final image x + ✏ looks the same to
a human. Furthermore, each image along the path is cor-
rectly classified by the model. The partial derivatives with
respect to the red, green, and blue components, however,
change significantly.

Figure 2. The partial derivative of Sc with respect to the RGB val-
ues of a single pixel as a fraction of the maximum entry in the
gradient vector, maxi

@Sc
@xi

(t), (middle plot) as one slowly moves
away from a baseline image x (left plot) to a fixed location x+ ✏
(right plot). ✏ is one random sample from N (0, 0.012). The fi-
nal image (x+ ✏) is indistinguishable to a human from the origin
image x.

Given these rapid fluctuations, the gradient of Sc at any
given point will be less meaningful than a local average
of gradient values. This suggests a new way to create im-
proved sensitivity maps: instead of basing a visualization
directly on the gradient @Sc, we could base it on a smooth-
ing of @Sc with a Gaussian kernel.

Directly computing such a local average in a high-
dimensional input space is intractable, but we can compute
a simple stochastic approximation. In particular, we can
take random samples in a neighborhood of an input x, and
average the resulting sensitivity maps. Mathematically, this
means calculating

M̂c(x) =
1

n

nX

1

Mc(x+N (0,�2))

where n is the number of samples, and N (0,�2) represents
Gaussian noise with standard deviation �. We refer to this
method as SMOOTHGRAD throughout the paper.

3. Experiments
To assess the SMOOTHGRAD technique, we performed a
series of experiments using a neural network for image
classification (Szegedy et al., 2016; TensorFlow, 2017).
The results suggest the estimated smoothed gradient, M̂c,
leads to visually more coherent sensitivity maps than the
unsmoothed gradient Mc, with the resulting visualizations
aligning better–to the human eye–with meaningful fea-
tures.

Our experiments were carried out using an Inception v3
model (Szegedy et al., 2016) that was trained on the
ILSVRC-2013 dataset (Russakovsky et al., 2015) and a
convolutional MNIST model based on the TensorFlow tu-
torial (TensorFlow, 2017).

3.1. Visualization methods and techniques

Sensitivity maps are typically visualized as heatmaps.
Finding the right mapping from a channel values at a pixel
to a particular color turns out to be surprisingly nuanced,
and can have a large effect on the resulting impression of
the visualization. This section summarizes some visualiza-
tion techniques and lessons learned in the process of com-
paring various sensitivity map work. Some of these tech-
niques may be universally useful regardless of the choice
of sensitivity map methods.

Absolute value of gradients

Sensitivity map algorithms often produce signed values.
There is considerable ambiguity in how to convert signed
values to colors. A key choice is whether to represent pos-
itive and negative values differently, or to visualize the ab-
solute value only. The utility of taking the absolute val-
ues of gradients or not depends on the characteristics of the
dataset of interest. For example, when the object of inter-
est has the same color across the classes (e.g., digits are
always white in MNIST digits (LeCun et al., 2010)), the
positive gradients indicate positive signal to the class. On
the other hand, for ImageNet dataset (Russakovsky et al.,
2015), we have found that taking the absolute value of the
gradient produced clearer pictures. One possible explana-
tion for this phenomenon is that the direction is context de-
pendent: many image recognition tasks are invariant under
color and illumination changes. For instance, in classifying
a ball, a dark ball on a bright background would have nega-
tive gradient, while white ball on darker background would
have a positive gradient.

Capping outlying values

Another property of the gradient that we observe is the
presence of few pixels that have much higher gradients than
the average. This is not a new discovery — this property
was utilized in generating adversarial examples that are in-

Image reproduced under fair use from 
https://arxiv.org/pdf/1706.03825.pdf

Plot of the values of !"!
!#"
(𝑡) as fraction of the maximum 

maxi
!"!
!#"
(𝑡) for a segment 𝑥 + 𝑡𝜀 in the space of images.

https://arxiv.org/pdf/1706.03825.pdf


Smoothening noisy gradients - II

• Stochastic approximation SMOOTHGRAD:
• Take random samples in the neighborhood of an input 𝑥, 
• Average the resulting sensitivity maps. 

• Mathematically,

• Here, 
• 𝑛 is the number of samples
• 𝒩(0, 𝜎2) represents Gaussian noise with standard deviation 𝜎. 
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ously differentiable.

Fig. 2 gives example of strongly fluctuating partial deriva-
tives. This fixes a particular image x, and an image pixel
xi, and plots the values of @Sc

@xi
(t) as fraction of the maxi-

mum entry in the gradient vector, maxi
@Sc
@xi

(t), for a short
line segment x + t✏ in the space of images parameterized
by t 2 [0, 1]. We show it as a fraction of the maximum
entry in order to verify that the fluctuations are significant.
The length of this segment is small enough that the start-
ing image x and the final image x + ✏ looks the same to
a human. Furthermore, each image along the path is cor-
rectly classified by the model. The partial derivatives with
respect to the red, green, and blue components, however,
change significantly.

Figure 2. The partial derivative of Sc with respect to the RGB val-
ues of a single pixel as a fraction of the maximum entry in the
gradient vector, maxi

@Sc
@xi

(t), (middle plot) as one slowly moves
away from a baseline image x (left plot) to a fixed location x+ ✏
(right plot). ✏ is one random sample from N (0, 0.012). The fi-
nal image (x+ ✏) is indistinguishable to a human from the origin
image x.

Given these rapid fluctuations, the gradient of Sc at any
given point will be less meaningful than a local average
of gradient values. This suggests a new way to create im-
proved sensitivity maps: instead of basing a visualization
directly on the gradient @Sc, we could base it on a smooth-
ing of @Sc with a Gaussian kernel.

Directly computing such a local average in a high-
dimensional input space is intractable, but we can compute
a simple stochastic approximation. In particular, we can
take random samples in a neighborhood of an input x, and
average the resulting sensitivity maps. Mathematically, this
means calculating

M̂c(x) =
1

n

nX

1

Mc(x+N (0,�2))

where n is the number of samples, and N (0,�2) represents
Gaussian noise with standard deviation �. We refer to this
method as SMOOTHGRAD throughout the paper.

3. Experiments
To assess the SMOOTHGRAD technique, we performed a
series of experiments using a neural network for image
classification (Szegedy et al., 2016; TensorFlow, 2017).
The results suggest the estimated smoothed gradient, M̂c,
leads to visually more coherent sensitivity maps than the
unsmoothed gradient Mc, with the resulting visualizations
aligning better–to the human eye–with meaningful fea-
tures.

Our experiments were carried out using an Inception v3
model (Szegedy et al., 2016) that was trained on the
ILSVRC-2013 dataset (Russakovsky et al., 2015) and a
convolutional MNIST model based on the TensorFlow tu-
torial (TensorFlow, 2017).

3.1. Visualization methods and techniques

Sensitivity maps are typically visualized as heatmaps.
Finding the right mapping from a channel values at a pixel
to a particular color turns out to be surprisingly nuanced,
and can have a large effect on the resulting impression of
the visualization. This section summarizes some visualiza-
tion techniques and lessons learned in the process of com-
paring various sensitivity map work. Some of these tech-
niques may be universally useful regardless of the choice
of sensitivity map methods.

Absolute value of gradients

Sensitivity map algorithms often produce signed values.
There is considerable ambiguity in how to convert signed
values to colors. A key choice is whether to represent pos-
itive and negative values differently, or to visualize the ab-
solute value only. The utility of taking the absolute val-
ues of gradients or not depends on the characteristics of the
dataset of interest. For example, when the object of inter-
est has the same color across the classes (e.g., digits are
always white in MNIST digits (LeCun et al., 2010)), the
positive gradients indicate positive signal to the class. On
the other hand, for ImageNet dataset (Russakovsky et al.,
2015), we have found that taking the absolute value of the
gradient produced clearer pictures. One possible explana-
tion for this phenomenon is that the direction is context de-
pendent: many image recognition tasks are invariant under
color and illumination changes. For instance, in classifying
a ball, a dark ball on a bright background would have nega-
tive gradient, while white ball on darker background would
have a positive gradient.

Capping outlying values

Another property of the gradient that we observe is the
presence of few pixels that have much higher gradients than
the average. This is not a new discovery — this property
was utilized in generating adversarial examples that are in-
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Experiments 
• Two image classification models:

• Inception v3 model (Szegedy et al., 2016) 
• a convolutional MNIST model

• Smoothed gradient, 𝑀𝑐, visually more coherent
• Sign of gradients in heat map visualizations:

• MNIST: positive gradients indicate support for the class
• ImageNet: absolute value leads to clearer pictures

• direction is context dependent
• image recognition invariant under 

• color changes (?) 
• illumination changes

• Outlier removal in heat maps:
• Bounding values to 99th percentile is visually coherent

• Multiplying maps with input images:
• May borrow clarity from the input.
• In a linear system 𝑦 = 𝑊 𝑥, product makes sense
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Figure 3. Effect of noise level (columns) on our method for 5 images of the gazelle class in ImageNet (rows). Each sensitivity map is
obtained by applying Gaussian noise N (0, �2) to the input pixels for 50 samples, and averaging them. The noise level corresponds to
�/(xmax � xmin).

distinguishable to humans (Szegedy et al., 2013). These
outlying values have the potential to throw off color scales
completely. Capping those extreme values to a relatively
high value (we find 99th percentile to be sufficient) leads
to more visually coherent maps as in (Sundararajan et al.,
2017). Without this post-processing step, maps may end up
almost entirely black.

Multiplying maps with the input images

Some techniques create a final sensitivity map by multiply-
ing gradient-based values and actual pixel values (Shriku-
mar et al., 2017; Sundararajan et al., 2017). This multipli-
cation does tend to produce visually simpler and sharper
images, although it can be unclear how much of this can
be attributed to sharpness in the original image itself. For
example, a black/white edge in the input can lead to an
edge-like structure on the final visualization even if the un-
derlying sensitivity map has no edges.

However, this may result in undesired side effect. Pixels
with values of 0 will never show up on the sensitivity map.
For example, if we encode black as 0, the image of a clas-
sifier that correctly predicts a black ball on a white back-
ground will never highlight the black ball in the image.

On the other hand, multiplying gradients with the input im-
ages makes sense when we view the importance of the fea-
ture as their contribution to the total score, y. For example,
in a linear system y = Wx, it makes sense to consider xiwi

as the contribution of xi to the final score y.

For these reasons, we show our results with and without the
image multiplication in Fig. 5.

3.2. Effect of noise level and sample size

SMOOTHGRAD has two hyper-parameters: �, the noise
level or standard deviation of the Gaussian perturbations,
and n, the number of samples to average over.

Noise, �

Fig. 3 shows the effect of noise level for several example
images from ImageNet (Russakovsky et al., 2015). The 2nd

column corresponds to the standard gradient (0% noise),
which we will refer to as the “Vanilla” method throughout
the paper. Since quantitative evaluation of a map remains
an unsolved problem, we again focus on qualitative eval-
uation. We observe that applying 10%-20% noise (middle
columns) seems to balance the sharpness of sensitivity map
and maintain the structure of the original image.We also
observe that while this range of noise gives generally good
results for Inception, the ideal noise level depends on the
input. See Fig. 10 for a similar experiment on the MNIST
dataset.

Sample size, n

In Fig. 4 we show the effect of sample size, n. As ex-
pected, the estimated gradient becomes smoother as the
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Figure 3. Effect of noise level (columns) on our method for 5 images of the gazelle class in ImageNet (rows). Each sensitivity map is
obtained by applying Gaussian noise N (0, �2) to the input pixels for 50 samples, and averaging them. The noise level corresponds to
�/(xmax � xmin).

distinguishable to humans (Szegedy et al., 2013). These
outlying values have the potential to throw off color scales
completely. Capping those extreme values to a relatively
high value (we find 99th percentile to be sufficient) leads
to more visually coherent maps as in (Sundararajan et al.,
2017). Without this post-processing step, maps may end up
almost entirely black.

Multiplying maps with the input images

Some techniques create a final sensitivity map by multiply-
ing gradient-based values and actual pixel values (Shriku-
mar et al., 2017; Sundararajan et al., 2017). This multipli-
cation does tend to produce visually simpler and sharper
images, although it can be unclear how much of this can
be attributed to sharpness in the original image itself. For
example, a black/white edge in the input can lead to an
edge-like structure on the final visualization even if the un-
derlying sensitivity map has no edges.

However, this may result in undesired side effect. Pixels
with values of 0 will never show up on the sensitivity map.
For example, if we encode black as 0, the image of a clas-
sifier that correctly predicts a black ball on a white back-
ground will never highlight the black ball in the image.

On the other hand, multiplying gradients with the input im-
ages makes sense when we view the importance of the fea-
ture as their contribution to the total score, y. For example,
in a linear system y = Wx, it makes sense to consider xiwi

as the contribution of xi to the final score y.

For these reasons, we show our results with and without the
image multiplication in Fig. 5.

3.2. Effect of noise level and sample size

SMOOTHGRAD has two hyper-parameters: �, the noise
level or standard deviation of the Gaussian perturbations,
and n, the number of samples to average over.

Noise, �

Fig. 3 shows the effect of noise level for several example
images from ImageNet (Russakovsky et al., 2015). The 2nd

column corresponds to the standard gradient (0% noise),
which we will refer to as the “Vanilla” method throughout
the paper. Since quantitative evaluation of a map remains
an unsolved problem, we again focus on qualitative eval-
uation. We observe that applying 10%-20% noise (middle
columns) seems to balance the sharpness of sensitivity map
and maintain the structure of the original image.We also
observe that while this range of noise gives generally good
results for Inception, the ideal noise level depends on the
input. See Fig. 10 for a similar experiment on the MNIST
dataset.

Sample size, n

In Fig. 4 we show the effect of sample size, n. As ex-
pected, the estimated gradient becomes smoother as the
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Noise and sample size of SMOOTHGRAD

• Noise, 𝝈
• 10%-20% noise balances 

sharpness and structure 
of the original image.
• Ideal noise level depends 

on the input. 
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Figure 10. Effect of noise level on the estimated gradient across 5 MNIST images. Each sensitivity map is obtained by applying a
Gaussian noise at inference time and averaging in the same way as in Fig. 3 over 100 samples.
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Noise and sample size of SMOOTHGRAD - II

• Sample size, 𝒏
• estimated gradient is smoother as sample size, 𝑛, grows in size. 
• diminishing return for 𝑛 > 50
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Figure 4. Effect of sample size on the estimated gradient for inception. 10% noise was applied to each image.

Figure 5. Qualitative evaluation of different methods. First three (last three) rows show examples where applying SMOOTHGRAD had
high (low) impact on the quality of sensitivity map.
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Evaluation: visual coherence

• Compared with three gradient-
based methods: 
• Integrated Gradients (Sundararajan 

et al., 2017), 
• Guided BackProp (Springenberg et 

al., 2014)
• vanilla gradient.

• Visual self-inspection of 200 
images
• Guided Backprop sharper
• But prone to failure
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Figure 4. Effect of sample size on the estimated gradient for inception. 10% noise was applied to each image.

Figure 5. Qualitative evaluation of different methods. First three (last three) rows show examples where applying SMOOTHGRAD had
high (low) impact on the quality of sensitivity map.
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Evaluation: discriminativity
• Choose images with at least two objects of different classes. 
• Compute the sensitivity maps M1(x) and M2 (x) for both classes
• Scale both to [0, 1], and calculate the difference M1 (x) − M2 (x). 
• Plot the values on a diverging color map [−1, 0, 1] → [blue, gray, red]. 
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Figure 6. Discriminativity of different methods. For each image, we visualize the difference scale(@y1/@x) � scale(@y2/@x) where y1
and y2 are the logits for the first and the second class (i.e., cat or dog) and scale() normalizes the gradient values to be between [0, 1].
The values are plotted using a diverging color map [�1, 0, 1] 7! [blue, gray, red]. Each method is represented in columns.

Figure 7. Using SMOOTHGRAD in addition to existing gradient-based methods: Integrated Gradients and Guided BackProp.
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SmoothGRAD + IG, Guided BackProp
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Conclusions
• Averaging maps of image + perturbations smoothens explanations
• Effect enhanced further by training on data with random noise
• Future Work:
• Investigate if noisy sensitivity maps arise due to noisy gradients?

• Theoretical arguments
• Other explanations for SMOOTHGRAD

• random noise and its interactions with different textures
• Direct methods to learn DNNs with smoother class score functions

• Penalty on large partial derivatives
• Explicit penalty for changes in derivatives of the class score w.r.t. neighboring pixels

• Understand the geometry of the class score function
• Explain why smoothing is better with large areas of near-constant pixel values?

• Better metrics and data sets
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