SmoothGrad: removing noise by adding noise

Paper Authors: Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viegas, Martin Wattenberg

Motivation

- One kind of explanation: Identify pixels that lead to the DNN decision.
- Starting point
 - Gradient of the class score or logit w.r.t. input.
 - Sort of a *sensitivity map*
- Two contributions
 - SMOOTHGRAD
 - visually sharper sensitivity maps
 - Lessons in the visualization of these maps
- Artifacts
 - Code
 - Website

Gradients as sensitivity maps

- A DNN that classifies
 - an input image x
 - into one class c
 - from a set C of possible classes
- DNN computes a class activation function S_c for each class $c \in C$
- The final classification class(x) determined by the highest score.
- That is,

$$class(x) = argmax_{c \in C} S_{c}(x)$$

Gradients as sensitivity maps - II

- If class activation functions S_c are piecewise differentiable,
- for any image *x*,
- construct a sensitivity map $M_c(x)$ by differentiating M_c w.r.t. the input x. $M_c(x) = \partial Sc(x)/\partial x$
 - *M_c* describes how a change in a pixel of *x* impacts its label as class *c*
 - Mathematically rigorous method of allocating importance to pixels
- Sensitivity maps of raw gradients are visually noisy
- Poor correlation with human expectation

Erhan D, Bengio Y, Courville A, Vincent P. Visualizing higher-layer features of a deep network. University of Montreal. 2009 Jun 9;1341(3):1.

Enhanced sensitivity maps

- Hypotheses for noisy raw gradients:
 - Honest to what the network has learned
 - Not an effective proxy for feature importance
- Attempts at many sensitivity maps:
 - Features may "saturate"; strong effect globally, but with a small derivative locally.
 - Layerwise Relevance Propagation (Bach et al., 2015)
 - DeepLift (Shrikumar et al., 2017)
 - Integrated Gradients (Sundararajan et al., 2017)
 - Extend backpropagation and emphasize positive contributions
 - Modify gradients of ReLU discarding negative values during backpropagation
 - *Deconvolution* (Zeiler & Fergus, 2014)
 - Guided Backpropagation (Springenberg et al., 2014)

Smoothing noisy gradients

- Potential explanation
 - the derivative of the class activation function $S_{\rm c}$ may fluctuate sharply
 - essentially meaningless local variations in partial derivatives.
 - ReLU activations
 - S_c not even continuously differentiable
- Gradient of S_c at any given point $\frac{\partial S_c}{\partial x_i}(t)$ less meaningful than a local average of gradient values
 - Smoothen ∂S_c with a Gaussian kernel
 - Computing an average intractable
 - High-dimensional inputs

Plot of the values of $\frac{\partial S_c}{\partial x_i}(t)$ as fraction of the maximum max_i $\frac{\partial S_c}{\partial x_i}(t)$ for a segment $x + t\varepsilon$ in the space of images.

Smoothening noisy gradients - II

- Stochastic approximation SMOOTHGRAD:
 - Take random samples in the neighborhood of an input x,
 - Average the resulting sensitivity maps.
- Mathematically,

$$\hat{M}_c(x) = \frac{1}{n} \sum_{1}^{n} M_c(x + \mathcal{N}(0, \sigma^2))$$

- Here,
 - *n* is the number of samples
 - $\mathcal{N}(0, \sigma^2)$ represents Gaussian noise with standard deviation σ .

Experiments

- Two image classification models:
 - Inception v3 model (Szegedy et al., 2016)
 - a convolutional MNIST model
- Smoothed gradient, M_c , visually more coherent
- Sign of gradients in heat map visualizations:
 - MNIST: positive gradients indicate support for the class
 - ImageNet: absolute value leads to clearer pictures
 - direction is context dependent
 - image recognition invariant under
 - color changes (?)
 - illumination changes
- Outlier removal in heat maps:
 - Bounding values to 99th percentile is visually coherent
- Multiplying maps with input images:
 - May borrow clarity from the input.
 - In a linear system y = W x, product makes sense

Impact of Noise on Attribution

Noise and sample size of SMOOTHGRAD

• Noise, σ

- 10%-20% noise balances sharpness and structure of the original image.
- Ideal noise level depends on the input.

Noise and sample size of SMOOTHGRAD - II

• Sample size, n

- estimated gradient is smoother as sample size, n, grows in size.
- diminishing return for n > 50

Evaluation: visual coherence

- Compared with three gradientbased methods:
 - Integrated Gradients (Sundararajan et al., 2017),
 - *Guided BackProp* (Springenberg et al., 2014)
 - vanilla gradient.
- Visual self-inspection of 200 images
- Guided Backprop sharper
 - But prone to failure

Evaluation: discriminativity

- Choose images with at least two objects of different classes.
- Compute the sensitivity maps M1(x) and M2 (x) for both classes
- Scale both to [0, 1], and calculate the difference M1 (x) M2 (x).
- Plot the values on a diverging color map $[-1, 0, 1] \rightarrow [blue, gray, red].$

SmoothGRAD + IG, Guided BackProp

Conclusions

- Averaging maps of image + perturbations smoothens explanations
- Effect enhanced further by training on data with random noise
- Future Work:
 - Investigate if noisy sensitivity maps arise due to noisy gradients?
 - Theoretical arguments
 - Other explanations for SMOOTHGRAD
 - random noise and its interactions with different textures
 - Direct methods to learn DNNs with smoother class score functions
 - Penalty on large partial derivatives
 - Explicit penalty for changes in derivatives of the class score w.r.t. neighboring pixels
 - Understand the geometry of the class score function
 - Explain why smoothing is better with large areas of near-constant pixel values?
 - Better metrics and data sets