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Motivation for X -DNNs
• Trade off 
• high-quality attributions

• satisfying axioms

• computational time/cost 
• Goal: Obviate this trade-off
• Search for a class of efficiently axiomatically attributable 

DNNs 
• only a single forward/backward pass for computing attributions. 

• nonnegatively homogeneous DNNs or X –DNNs
• Constructed from DNNs by removing the bias term.
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Related work 
• Two types of attribution methods 
• Perturbation-based 

• repeatably perturb individual inputs or neurons to study impact on outcome
• each perturbation requires a forward pass

• Computationally inefficient

• Backpropagation-based
• Back-propagate importance from output to input using gradients or rules
• Gradient-based e.g. saliency, Input × Gradient, IG

• scale high-dimensional inputs
• implemented on GPUs
• applied to any differentiable model

• Rule-based
• Layerwise Relevance Propagation (LRP)

• predefined backpropagation rules for every NN component
• DeepLIFT relies on a neutral baseline input

• uses the difference of the normal activation and reference activation of each neuron. 
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Axiomatic attributions
• Sensitivity (a) 

• for every input and baseline that differ in 1 feature with different predictions, 
• the differing feature should be given a non-zero attribution. 

• Sensitivity (b) 
• If a DNN does not depend (mathematically) on some variable v, 
• then the attribution for v is 0. 

• Implementation invariance
• attributions for 2 functionally equivalent networks are always identical. 

• Completeness
• attributions add up to the difference between the DNN output for 

• the input and 
• the baseline. 

• Linearity
• attribution of a linearly composed deep network a F1 + b F2
• is same as the weighted sum of the attributions for F1 and F2 with weights a and b. 

• Symmetry preservation 
• Symmetric variables with identical values receive identical attributions. 
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Training using attribution priors
• Training objective formulated as 

• Here, 
• a model 𝐹𝜃 with parameters θ 
• trained on the dataset 𝑋. 
• 𝐿 is the task loss,
• Ω is a scalar-valued loss of the feature attribution 𝐴 (the attribution prior)
• λ controls the relative weighting

• IG can be used for A 
• but it may involve ∼ 20–300 gradient calculations
• Liu and Avci report 30X increase in training time

[34] shows that none of the above methods satisfy all axioms, e.g., the saliency method and
Input⇥Gradient can suffer from the well-known problem of gradient saturation, which means that
even important features can have zero attribution. To overcome this, [34] introduces Integrated Gradi-
ents, a gradient-based backpropagation method that provably satisfies these axioms; it is considered a
high-quality attribution method to date [7, 14]. Its crucial disadvantage over previous methods is that
an integral has to be solved, which generally requires an approximation based on ⇠ 20–300 gradient
calculations, making it correspondingly computationally more expensive than, e.g., Input⇥Gradient.

Attribution priors. The above attribution methods cannot only be used for explaining a model’s
behavior but also to actively control the behavior. To that end, the training objective can be formulated
as

✓⇤ = argmin
✓

1

|X|
X

(x,y)2X

L(F✓;x, y) + �⌦(A(F✓, x)), (1)

where a model F✓ with parameters ✓ is trained on the annotated dataset X . L denotes the regular
task loss, and ⌦ is a scalar-valued loss of the feature attribution A, which is called the attribution
prior [7]; � controls the relative weighting. For example, by forcing certain values of the attribution
to be zero, we can mitigate the dependence on unwanted features [23]. But also more complex model
interventions, such as making an object recognition model focus on shape [22] or less sensitive to
high-frequency noise [7], can be formulated using attribution priors.

An early instance of this idea is the Right for the Right Reasons (RRR) approach of Ross et al.
[23], which uses the input gradient of the log prediction to mitigate the dependence on unwanted
features. While this is more stable than simply using the input gradient, it still suffers from the
problem of saturation. RRR may thus not reflect the true behavior of the model, and therefore,
miss relevant features. Subsequent work addresses this issue using axiomatic feature attribution
methods, specifically Integrated Gradients [6, 14, 34], which allows for more effective attribution
priors [7] but incurs significant computational overhead, rendering them impractical for many
scenarios. For example, Liu and Avci [14] report a thirty-fold increase in training time compared
to standard training. Rieger et al. [22] propose an alternative attribution prior based on a rule-based
contextual decomposition [18, 31] (CD) as attribution method. This allows to consider clusters of
features [7] instead of individual features and to define attribution priors working on feature groups.
However, computing the attribution for individual features becomes computationally inefficient [7].
Additionally, since CD is a rule-based attribution method, it requires custom modules and cannot
be applied to all types of DNNs [7]. The very recently proposed Expected Gradients [7] method
reformulates Integrated Gradients as an expectation, allowing a sampling-based approximation of
the attribution. Erion et al. [7] argue that similar to batch gradient descent, where the true gradient
of the loss function is approximated over many training steps, the sampling-based approximation
allows to approximate the attribution over many training steps. This results in better attributions while
using fewer approximation steps. Even using as little as one reference sample, i.e., only one gradient
computation, can yield advantages over the regular input gradient. However, we show that using
only one reference sample still does not yield the same attribution quality as an axiomatic feature
attribution method, reflected in less effective attribution priors. Schramowski et al. [26] propose a
human-in-the-loop strategy to define appropriate attribution priors while training. Our attribution
method is complementary and could be used within their framework.

3 Efficiently axiomatically attributable DNNs

Formally, given a function F : Rn 7! R, representing a single output node of a DNN, and an input
x 2 Rn, the feature attribution for the prediction at input x relative to a baseline input x0 is a vector
A(F, x, x0) 2 Rn, where each element ai is the contribution of feature xi to the prediction F (x) [34].
In this work we seek an attribution method that is particularly well suited for scenarios where such
an attribution is used at training time, e.g., training with attribution priors. As such, the attribution
method should be of high quality, while being efficiently computable in a single forward/backward
pass. Since attributions obtained from Integrated Gradients [34] have strong theoretical justifications
and are known to be of high-quality [14], they will serve as our starting point. In general, however,
Integrated Gradients are expensive to compute for arbitrary DNNs. Therefore, in this work, we restrict
our attention to a special sub-class of DNNs, termed efficiently axiomatically attributable DNNs,
that require only a single forward/backward pass to compute a closed-form solution of Integrated
Gradients. We show that nonnegatively homogeneous DNNs belong to this class and use this insight
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Efficiently axiomatically attributable DNNs 
• Given a single DNN output 𝐹 ∶ ℝ𝑛 → ℝ, 
• an input 𝑥 ∈ ℝn, 
• 𝐴(𝐹, 𝑥, 𝑥′) ∈ ℝ𝑛 is the feature attribution 
• for the prediction at input 𝑥 relative to a baseline input 𝑥!
• each element 𝑎𝑖 is the contribution of feature 𝑥𝑖 to the prediction 𝐹 𝑥 .

• Efficiently axiomatically attributable DNNs, 
• only a single forward/backward pass to compute IG

• A DNN F ∶ ℝn → R is efficiently axiomatically attributable
• w.r.t. a baseline x′ ∈ ℝn, 
• if there exists a closed-form solution of Integrated Gradients 𝐼𝐺𝑖 (𝐹, 𝑥, 𝑥′)
• along the ith dimension of 𝑥 ∈ ℝn

• requiring only one forward/backward pass.
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• For a DNN 𝐹 ∶ ℝ𝑛 → ℝ, there exists closed-form solution of IGi(F, x, 0) 
• w.r.t. the zero baseline 0 ∈ ℝ𝑛

• requiring only one forward/backward pass, 
• if 𝐹 is strictly positive homogeneous of degree 𝑘 ∈ ℝ≥1, 
• i.e., 𝐹 (𝛼𝑥) = 𝛼𝑘𝐹 (𝑥) 𝑓𝑜𝑟 𝛼 ∈ ℝ > 0.

• Proof. Definition of Integrated Gradients (IG) with baseline 0:

to guide the design of a concrete instantiation of efficiently axiomatically attributable DNNs. While
there may be several such instantiations, we chose this particular one as it can be easily constructed
from a wide range of regular DNNs by simply removing the bias term of each layer. This ensures
comparability to prior work and allows for an easy adaptation of existing network architectures.
Definition 3.1. We call a DNN F : Rn 7! R efficiently axiomatically attributable w.r.t. a baseline
x0 2 Rn, if there exists a closed-form solution of the axiomatic feature attribution method Integrated
Gradients IGi(F, x, x0) along the ith dimension of x 2 Rn, requiring only one forward/backward
pass.

Note that all differentiable models are efficiently axiomatically attributable w.r.t. the trivial baseline
x0 = x. However, using such a baseline is not helpful. Instead, commonly chosen baselines are some
kind of averaged input features or baselines such that F (x0) = 0, which allow an interpretation of the
attribution that amounts to distributing the output to the individual input features [34].
Proposition 3.2. For a DNN F : Rn 7! R there exists a closed-form solution of IGi(F, x,0)
w.r.t. the zero baseline 0 2 Rn, requiring only one forward/backward pass, if F is strictly positive
homogeneous of degree k 2 R�1, i.e., F (↵x) = ↵kF (x) for ↵ 2 R>0.

Proof. Sundararajan et al. [34] define the axiomatic feature attribution method Integrated Gradients
(IG) along the ith dimension for a given model F , input x, baseline 0, and straightline path �(↵) = ↵x
as

IGi(F, x,0) =

Z 1

0

@F (�(↵))

@�i(↵)

@�i(↵)

@↵
d↵ =

Z 1

0

@F (↵x)

@↵xi

@↵xi

@↵
d↵ . (2)

Assuming F is strictly positive homogeneous of degree k � 1, we can write Integrated Gradients in
Eq. (2) as

IGi(F, x,0) = lim
�!0

Z 1

�

@F (↵x)

@↵xi
xi d↵ = lim

�!0

Z 1

�
↵k�1 @F (x)

@xi
xi d↵ =

1

k
xi

@F (x)

@xi
. (3)

The gradient expression in Eq. (3) can be computed using a single forward/backward pass.

While Ancona et al. [1] already found that Input⇥Gradient equals Integrated Gradients with the zero
baseline for linear models or models that behave linearly for a selected task, our Proposition 3.2 is
more general: We only require strictly positive homogeneity of an arbitrary order k � 1. This allows
us to consider a larger class of models including nonnegatively homogeneous DNNs, which generally
are not linear.

Definition 3.3. We call a DNN F : Rn 7! R nonnegatively homogeneous, if F (↵x) = ↵F (x) for
all ↵ 2 R�0.
Corollary 3.4. Any nonnegatively homogeneous DNN is efficiently axiomatically attributable
w.r.t. the zero baseline 0 2 Rn and a closed-form solution of the axiomatic feature attribution
method Integrated Gradients, requiring only one forward/backward pass, exists.

Proof. Corollary 3.4 follows directly from Proposition 3.2 and Definitions 3.1 and 3.3.

Definition 3.5. We let X -DNN denote a nonnegatively homogeneous DNN. Further, for any X -DNN
F : Rn 7! R, we let X -Gradient (X G) be an axiomatic feature attribution method relative to the zero
baseline 0 2 Rn defined as

X Gi(F, x) = IGi(F, x,0) = xi
@F (x)

@xi
. (4)

Note that while the formulas for the existing attribution method Input⇥Gradient [27] and our novel
X -Gradient are equal, X -Gradient is only defined for the subclass of X -DNNs and provably satisfies
axioms that are generally not satisfied by Input⇥Gradient. Additionally, from the nonnegative
homogeneity of X -DNNs it follows that X -Gradient attributions are also nonnegatively homogeneous.
This allows us to define another desirable axiom that is in line with intuition about how attribution
should work and that is satisfied by X -Gradient.

Definition 3.6. An attribution method A satisfies nonnegative homogeneity if A(F,↵x,↵x0) =
↵ A(F, x, x0) for all ↵ 2 R�0.
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Key Result - II
• Nonnegatively homogeneous DNN 𝐹 : ℝn → ℝ

• Any nonnegatively homogeneous DNN is efficiently axiomatically 
attributable w.r.t. the zero baseline 0 ∈ ℝ𝑛.
• Proof Sketch: Last slide
• For any X -DNN 𝐹 : ℝn → ℝ, X –Gradient (𝑋𝐺) relative to the zero 

baseline 0 ∈ ℝn is defined as 

𝐹 𝛼𝑥 = 𝛼𝐹 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 ∈ ℝ > 0.
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Axioms re-visited

Table 1: Overview of different gradient-based DNN attribution methods and the axioms [34] that they
provably satisfy. The left-hand side methods (Integrated Gradients, Expected Gradients) induce one to
two orders of magnitude of computational overhead compared to the methods on the right-hand side.
The methods on the right-hand side require only one gradient evaluation (indicated by (1) for Expected
Gradients with one reference sample), and thus, can be computed in a single forward/backward pass.
Note how X -Gradient satisfies all axioms while requiring as little computational cost as a simple
gradient evaluation, however being only defined for X -DNNs.

Integrated Expected Expected (Input ⇥)
Axiom Gradients Gradients Gradients(1) Gradient X -Gradient

Sensitivity (a) 3 3 7 7 3
Sensitivity (b) 3 3 3 3 3
Implementation invariance 3 3 7 3 3
Completeness 3 3 7 7 3
Linearity 3 3 7 3 3
Symmetry-preserving 3 3 7 3 3

For an overview of the axioms [34] that are satisfied by popular gradient-based attribution methods,
see Table 1. The right-hand side methods use only one gradient evaluation, and therefore, have
similar computational expense. The left-hand side methods generally require multiple gradient
evaluations until convergence, making them correspondingly computationally more expensive. Note
that X -Gradient satisfies all the axioms satisfied by Integrated Gradients and Expected Gradients [7],
assuming convergence of the latter, while requiring only a fraction of the computational cost, however
being only defined for X -DNNs. Existing methods that have similar computational expense as
X -Gradient generally do not satisfy all of the axioms, and therefore, are likely to produce lower
quality attributions, which can be misleading and less effective for imposing attribution priors.

Constructing X -DNNs. With this motivation in mind, we will now study concrete instantiations
of nonnegatively homogeneous DNNs. Note that this class of DNNs has already been considered
by Zhang et al. [40], however, neither at the same level of detail nor in the context of feature
attributions. We define the output of a regular feedforward DNN F : Rn 7! Ro, for an input x 2 Rn,
as a recursive sequence of layers l that are applied to the output of the respective previous layer:

Fl (x) =

⇢
 l (�l (WlFl�1(x) + bl)) if l � 1
x if l = 0,

(5)

with Wl and bl being the weight matrix and bias term for layer l, �l being the corresponding activation
function, and  l being the corresponding pooling function. Both �l and  l are optional; alternatively
they are the identity function. For simplicity, we assume that the last task-specific layer, e.g., the
softmax function for classification tasks, is part of the loss function. Further, for a cleaner notation that
aligns with [34], we assume w.l.o.g. that we are only considering one output node at a time, e.g., the
logit of the target class for classification tasks. This yields the DNN F : Rn 7! R that we consider
and allows us to directly compute the derivative of the model w.r.t. an input feature xi. Importantly,
the above formalization comprises many popular layer types and architectures. For example, fully
connected and convolutional layers are essentially matrix multiplications [36], and therefore, can be
expressed by Eq. (5). Skip connections can also be expressed as matrix multiplication by appending
the identity matrix to the weight matrix so that the input is propagated to later layers [36]. This allows
us to describe even complex architectures such as the ResNet [9] variant proposed by [40]. As the
above definition of a DNN includes models that are generally not nonnegatively homogeneous, we
have to make some assumptions.
Assumption 3.7. The activation functions �l and pooling functions  l in the model are nonnegatively
homogeneous. Formally, for all ↵ 2 R�0 :

↵�l(z) = �l(↵z) and ↵ l(z) =  l(↵z). (6)

Proposition 3.8. Piecewise linear activation functions with two intervals separated by zero satisfy
Assumption 3.7. For z = (z1, . . . , zn) 2 Rn, these activation functions �l : Rn 7! Rn are defined as

�l (z) = (�0l(z1), . . . ,�
0
l(zn)) with �0l(zi) =

⇢
al,1zi if zi > 0
al,2zi if zi  0.

(7)
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Constructing X-DNNs

• Define a regular feedforward DNN 𝐹 ∶ ℝ𝑛 → ℝ0, for an input 𝑥 ∈ ℝ𝑛,
• as a recursive sequence of layers l that are applied to the output of 

the respective previous layer: 

• with Wl and bl being the weight matrix and bias term for layer 𝑙,
• 𝜙𝑙 being the corresponding activation function, and 
• 𝜓𝑙 being the corresponding pooling function. 

Table 1: Overview of different gradient-based DNN attribution methods and the axioms [34] that they
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that X -Gradient satisfies all the axioms satisfied by Integrated Gradients and Expected Gradients [7],
assuming convergence of the latter, while requiring only a fraction of the computational cost, however
being only defined for X -DNNs. Existing methods that have similar computational expense as
X -Gradient generally do not satisfy all of the axioms, and therefore, are likely to produce lower
quality attributions, which can be misleading and less effective for imposing attribution priors.

Constructing X -DNNs. With this motivation in mind, we will now study concrete instantiations
of nonnegatively homogeneous DNNs. Note that this class of DNNs has already been considered
by Zhang et al. [40], however, neither at the same level of detail nor in the context of feature
attributions. We define the output of a regular feedforward DNN F : Rn 7! Ro, for an input x 2 Rn,
as a recursive sequence of layers l that are applied to the output of the respective previous layer:

Fl (x) =

⇢
 l (�l (WlFl�1(x) + bl)) if l � 1
x if l = 0,

(5)

with Wl and bl being the weight matrix and bias term for layer l, �l being the corresponding activation
function, and  l being the corresponding pooling function. Both �l and  l are optional; alternatively
they are the identity function. For simplicity, we assume that the last task-specific layer, e.g., the
softmax function for classification tasks, is part of the loss function. Further, for a cleaner notation that
aligns with [34], we assume w.l.o.g. that we are only considering one output node at a time, e.g., the
logit of the target class for classification tasks. This yields the DNN F : Rn 7! R that we consider
and allows us to directly compute the derivative of the model w.r.t. an input feature xi. Importantly,
the above formalization comprises many popular layer types and architectures. For example, fully
connected and convolutional layers are essentially matrix multiplications [36], and therefore, can be
expressed by Eq. (5). Skip connections can also be expressed as matrix multiplication by appending
the identity matrix to the weight matrix so that the input is propagated to later layers [36]. This allows
us to describe even complex architectures such as the ResNet [9] variant proposed by [40]. As the
above definition of a DNN includes models that are generally not nonnegatively homogeneous, we
have to make some assumptions.
Assumption 3.7. The activation functions �l and pooling functions  l in the model are nonnegatively
homogeneous. Formally, for all ↵ 2 R�0 :

↵�l(z) = �l(↵z) and ↵ l(z) =  l(↵z). (6)

Proposition 3.8. Piecewise linear activation functions with two intervals separated by zero satisfy
Assumption 3.7. For z = (z1, . . . , zn) 2 Rn, these activation functions �l : Rn 7! Rn are defined as

�l (z) = (�0l(z1), . . . ,�
0
l(zn)) with �0l(zi) =

⇢
al,1zi if zi > 0
al,2zi if zi  0.

(7)
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Constructing X-DNNs
• Define a regular feedforward DNN 𝐹 ∶ ℝ𝑛 → ℝ0, for an input 𝑥 ∈ ℝ𝑛,

• with Wl and bl being the weight matrix and bias term for layer 𝑙,
• 𝜙𝑙 being the corresponding activation function, and 
• 𝜓𝑙 being the corresponding pooling function. 

Table 1: Overview of different gradient-based DNN attribution methods and the axioms [34] that they
provably satisfy. The left-hand side methods (Integrated Gradients, Expected Gradients) induce one to
two orders of magnitude of computational overhead compared to the methods on the right-hand side.
The methods on the right-hand side require only one gradient evaluation (indicated by (1) for Expected
Gradients with one reference sample), and thus, can be computed in a single forward/backward pass.
Note how X -Gradient satisfies all axioms while requiring as little computational cost as a simple
gradient evaluation, however being only defined for X -DNNs.

Integrated Expected Expected (Input ⇥)
Axiom Gradients Gradients Gradients(1) Gradient X -Gradient

Sensitivity (a) 3 3 7 7 3
Sensitivity (b) 3 3 3 3 3
Implementation invariance 3 3 7 3 3
Completeness 3 3 7 7 3
Linearity 3 3 7 3 3
Symmetry-preserving 3 3 7 3 3

For an overview of the axioms [34] that are satisfied by popular gradient-based attribution methods,
see Table 1. The right-hand side methods use only one gradient evaluation, and therefore, have
similar computational expense. The left-hand side methods generally require multiple gradient
evaluations until convergence, making them correspondingly computationally more expensive. Note
that X -Gradient satisfies all the axioms satisfied by Integrated Gradients and Expected Gradients [7],
assuming convergence of the latter, while requiring only a fraction of the computational cost, however
being only defined for X -DNNs. Existing methods that have similar computational expense as
X -Gradient generally do not satisfy all of the axioms, and therefore, are likely to produce lower
quality attributions, which can be misleading and less effective for imposing attribution priors.

Constructing X -DNNs. With this motivation in mind, we will now study concrete instantiations
of nonnegatively homogeneous DNNs. Note that this class of DNNs has already been considered
by Zhang et al. [40], however, neither at the same level of detail nor in the context of feature
attributions. We define the output of a regular feedforward DNN F : Rn 7! Ro, for an input x 2 Rn,
as a recursive sequence of layers l that are applied to the output of the respective previous layer:

Fl (x) =

⇢
 l (�l (WlFl�1(x) + bl)) if l � 1
x if l = 0,

(5)

with Wl and bl being the weight matrix and bias term for layer l, �l being the corresponding activation
function, and  l being the corresponding pooling function. Both �l and  l are optional; alternatively
they are the identity function. For simplicity, we assume that the last task-specific layer, e.g., the
softmax function for classification tasks, is part of the loss function. Further, for a cleaner notation that
aligns with [34], we assume w.l.o.g. that we are only considering one output node at a time, e.g., the
logit of the target class for classification tasks. This yields the DNN F : Rn 7! R that we consider
and allows us to directly compute the derivative of the model w.r.t. an input feature xi. Importantly,
the above formalization comprises many popular layer types and architectures. For example, fully
connected and convolutional layers are essentially matrix multiplications [36], and therefore, can be
expressed by Eq. (5). Skip connections can also be expressed as matrix multiplication by appending
the identity matrix to the weight matrix so that the input is propagated to later layers [36]. This allows
us to describe even complex architectures such as the ResNet [9] variant proposed by [40]. As the
above definition of a DNN includes models that are generally not nonnegatively homogeneous, we
have to make some assumptions.
Assumption 3.7. The activation functions �l and pooling functions  l in the model are nonnegatively
homogeneous. Formally, for all ↵ 2 R�0 :

↵�l(z) = �l(↵z) and ↵ l(z) =  l(↵z). (6)

Proposition 3.8. Piecewise linear activation functions with two intervals separated by zero satisfy
Assumption 3.7. For z = (z1, . . . , zn) 2 Rn, these activation functions �l : Rn 7! Rn are defined as

�l (z) = (�0l(z1), . . . ,�
0
l(zn)) with �0l(zi) =

⇢
al,1zi if zi > 0
al,2zi if zi  0.

(7)
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• fully connected and convolutional layers = Matrix multiplications
• Skip connections = Identity matrix at future layers

• Both optional i.e. identity matrices
• Softmax subsumed in loss function

• Can capture VGG, AlexNet, ResNet–type architectures
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Constructing X-DNNs - II
• Assumption for X-DNNs: the activation functions 𝜙𝑙 and pooling functions 
𝜓𝑙 in the model are nonnegatively homogeneous. 
• Formally, for all 𝛼 ∈ ℝ ≥ 0 ∶
• Piecewise linear activation functions with two intervals separated by zero 

satisfy the above. 
• ReLU, Leaky ReLU, and PReLU.

• For 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ ℝ𝑛, these activation functions 𝜙𝑙 ∶ ℝ𝑛 → ℝ𝑛 are 
defined as 

Table 1: Overview of different gradient-based DNN attribution methods and the axioms [34] that they
provably satisfy. The left-hand side methods (Integrated Gradients, Expected Gradients) induce one to
two orders of magnitude of computational overhead compared to the methods on the right-hand side.
The methods on the right-hand side require only one gradient evaluation (indicated by (1) for Expected
Gradients with one reference sample), and thus, can be computed in a single forward/backward pass.
Note how X -Gradient satisfies all axioms while requiring as little computational cost as a simple
gradient evaluation, however being only defined for X -DNNs.

Integrated Expected Expected (Input ⇥)
Axiom Gradients Gradients Gradients(1) Gradient X -Gradient

Sensitivity (a) 3 3 7 7 3
Sensitivity (b) 3 3 3 3 3
Implementation invariance 3 3 7 3 3
Completeness 3 3 7 7 3
Linearity 3 3 7 3 3
Symmetry-preserving 3 3 7 3 3

For an overview of the axioms [34] that are satisfied by popular gradient-based attribution methods,
see Table 1. The right-hand side methods use only one gradient evaluation, and therefore, have
similar computational expense. The left-hand side methods generally require multiple gradient
evaluations until convergence, making them correspondingly computationally more expensive. Note
that X -Gradient satisfies all the axioms satisfied by Integrated Gradients and Expected Gradients [7],
assuming convergence of the latter, while requiring only a fraction of the computational cost, however
being only defined for X -DNNs. Existing methods that have similar computational expense as
X -Gradient generally do not satisfy all of the axioms, and therefore, are likely to produce lower
quality attributions, which can be misleading and less effective for imposing attribution priors.

Constructing X -DNNs. With this motivation in mind, we will now study concrete instantiations
of nonnegatively homogeneous DNNs. Note that this class of DNNs has already been considered
by Zhang et al. [40], however, neither at the same level of detail nor in the context of feature
attributions. We define the output of a regular feedforward DNN F : Rn 7! Ro, for an input x 2 Rn,
as a recursive sequence of layers l that are applied to the output of the respective previous layer:

Fl (x) =

⇢
 l (�l (WlFl�1(x) + bl)) if l � 1
x if l = 0,

(5)

with Wl and bl being the weight matrix and bias term for layer l, �l being the corresponding activation
function, and  l being the corresponding pooling function. Both �l and  l are optional; alternatively
they are the identity function. For simplicity, we assume that the last task-specific layer, e.g., the
softmax function for classification tasks, is part of the loss function. Further, for a cleaner notation that
aligns with [34], we assume w.l.o.g. that we are only considering one output node at a time, e.g., the
logit of the target class for classification tasks. This yields the DNN F : Rn 7! R that we consider
and allows us to directly compute the derivative of the model w.r.t. an input feature xi. Importantly,
the above formalization comprises many popular layer types and architectures. For example, fully
connected and convolutional layers are essentially matrix multiplications [36], and therefore, can be
expressed by Eq. (5). Skip connections can also be expressed as matrix multiplication by appending
the identity matrix to the weight matrix so that the input is propagated to later layers [36]. This allows
us to describe even complex architectures such as the ResNet [9] variant proposed by [40]. As the
above definition of a DNN includes models that are generally not nonnegatively homogeneous, we
have to make some assumptions.
Assumption 3.7. The activation functions �l and pooling functions  l in the model are nonnegatively
homogeneous. Formally, for all ↵ 2 R�0 :

↵�l(z) = �l(↵z) and ↵ l(z) =  l(↵z). (6)

Proposition 3.8. Piecewise linear activation functions with two intervals separated by zero satisfy
Assumption 3.7. For z = (z1, . . . , zn) 2 Rn, these activation functions �l : Rn 7! Rn are defined as

�l (z) = (�0l(z1), . . . ,�
0
l(zn)) with �0l(zi) =

⇢
al,1zi if zi > 0
al,2zi if zi  0.

(7)
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Table 1: Overview of different gradient-based DNN attribution methods and the axioms [34] that they
provably satisfy. The left-hand side methods (Integrated Gradients, Expected Gradients) induce one to
two orders of magnitude of computational overhead compared to the methods on the right-hand side.
The methods on the right-hand side require only one gradient evaluation (indicated by (1) for Expected
Gradients with one reference sample), and thus, can be computed in a single forward/backward pass.
Note how X -Gradient satisfies all axioms while requiring as little computational cost as a simple
gradient evaluation, however being only defined for X -DNNs.

Integrated Expected Expected (Input ⇥)
Axiom Gradients Gradients Gradients(1) Gradient X -Gradient

Sensitivity (a) 3 3 7 7 3
Sensitivity (b) 3 3 3 3 3
Implementation invariance 3 3 7 3 3
Completeness 3 3 7 7 3
Linearity 3 3 7 3 3
Symmetry-preserving 3 3 7 3 3

For an overview of the axioms [34] that are satisfied by popular gradient-based attribution methods,
see Table 1. The right-hand side methods use only one gradient evaluation, and therefore, have
similar computational expense. The left-hand side methods generally require multiple gradient
evaluations until convergence, making them correspondingly computationally more expensive. Note
that X -Gradient satisfies all the axioms satisfied by Integrated Gradients and Expected Gradients [7],
assuming convergence of the latter, while requiring only a fraction of the computational cost, however
being only defined for X -DNNs. Existing methods that have similar computational expense as
X -Gradient generally do not satisfy all of the axioms, and therefore, are likely to produce lower
quality attributions, which can be misleading and less effective for imposing attribution priors.

Constructing X -DNNs. With this motivation in mind, we will now study concrete instantiations
of nonnegatively homogeneous DNNs. Note that this class of DNNs has already been considered
by Zhang et al. [40], however, neither at the same level of detail nor in the context of feature
attributions. We define the output of a regular feedforward DNN F : Rn 7! Ro, for an input x 2 Rn,
as a recursive sequence of layers l that are applied to the output of the respective previous layer:

Fl (x) =

⇢
 l (�l (WlFl�1(x) + bl)) if l � 1
x if l = 0,

(5)

with Wl and bl being the weight matrix and bias term for layer l, �l being the corresponding activation
function, and  l being the corresponding pooling function. Both �l and  l are optional; alternatively
they are the identity function. For simplicity, we assume that the last task-specific layer, e.g., the
softmax function for classification tasks, is part of the loss function. Further, for a cleaner notation that
aligns with [34], we assume w.l.o.g. that we are only considering one output node at a time, e.g., the
logit of the target class for classification tasks. This yields the DNN F : Rn 7! R that we consider
and allows us to directly compute the derivative of the model w.r.t. an input feature xi. Importantly,
the above formalization comprises many popular layer types and architectures. For example, fully
connected and convolutional layers are essentially matrix multiplications [36], and therefore, can be
expressed by Eq. (5). Skip connections can also be expressed as matrix multiplication by appending
the identity matrix to the weight matrix so that the input is propagated to later layers [36]. This allows
us to describe even complex architectures such as the ResNet [9] variant proposed by [40]. As the
above definition of a DNN includes models that are generally not nonnegatively homogeneous, we
have to make some assumptions.
Assumption 3.7. The activation functions �l and pooling functions  l in the model are nonnegatively
homogeneous. Formally, for all ↵ 2 R�0 :

↵�l(z) = �l(↵z) and ↵ l(z) =  l(↵z). (6)

Proposition 3.8. Piecewise linear activation functions with two intervals separated by zero satisfy
Assumption 3.7. For z = (z1, . . . , zn) 2 Rn, these activation functions �l : Rn 7! Rn are defined as

�l (z) = (�0l(z1), . . . ,�
0
l(zn)) with �0l(zi) =

⇢
al,1zi if zi > 0
al,2zi if zi  0.

(7)
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Constructing X-DNNs - III
• Linear pooling functions or pooling functions selecting values based 

on their relative ordering are non-neg homogenous. 
• Max/min/average pooling, global average pooling, strided convolutions

• For 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ ℝ𝑛, these pooling functions 𝜓𝑙 ∶ ℝ
𝑛 → ℝ𝑚 are 

defined as

• with 
• 𝑧𝑖′ being a grouping of entries in 𝑧 based on their spatial location
• 𝜓𝑙": ℝ

𝑚 → ℝ being 
• linear or 
• a selection of a value based on its relative ordering, 

• e.g., the maximum or minimum value. 

Proposition 3.9. Linear pooling functions or pooling functions selecting values based on their
relative ordering satisfy Assumption 3.7. For z = (z1, . . . , zn) 2 Rn, these pooling functions
 l : Rn 7! Rm are defined as

 l (z) = ( 0
l(z

0
1), . . . , 

0
l(z

0
m)), (8)

with z0i being a grouping of entries in z based on their spatial location and  0
l : Rm 7! R being linear

or a selection of a value based on its relative ordering, e.g., the maximum or minimum value.

For proofs of Propositions 3.8 and 3.9, please refer to Appendix A. Activation functions in Propo-
sition 3.8 include ReLU [19], Leaky ReLU [16], and PReLU [8]. Linear pooling functions in
Proposition 3.9 include average pooling, global average pooling, and strided convolutions. Other
pooling functions in Proposition 3.9 include max pooling and min pooling [32], where the largest
or smallest value is selected. Therefore, DNN architectures satisfying Assumption 3.7 include,
inter alia, AlexNet [11], VGGNet [29], ResNet [9] as introduced in [40], and MLPs with ReLU
activations. They alone have been cited well over one hundred thousand times, showing that we are
considering a substantial fraction of commonly used DNN architectures. However, these architectures
are generally still not nonnegatively homogeneous. It is easy to see that even for a simple linear
model F (x) = ax+ b that can be expressed by Eq. (5) and that satisfies Assumption 3.7, nonnegative
homogeneity does not hold, because 0F (x) = 0 6= b = F (0x). Therefore, in a final step we set the
bias term of each layer to zero. As this may seem like a significant restriction, we show in Sec. 4 that
the impact on the predictive accuracy in two different application domains is surprisingly minor.
Corollary 3.10. Any regular DNN given by Eq. (5) satisfying Assumption 3.7 can be transformed
into an X -DNN by removing the bias term of each layer.

Proof. A DNN F with L layers given by Eq. (5) with all biases bl set to 0 can be written as
F (x) =  L(�L(WL(...( 1(�1(W1x)))))). As all the pooling functions  l, activation functions �l,
and matrix multiplications Wl in F are nonnegatively homogeneous, it follows that F (↵x) = ↵F (x)
for all ↵ 2 R�0.

Further discussion. We additionally note that our results have interesting consequences for DNNs
in certain application domains, e.g., in computer vision, as they allow to relate efficient axiomatic
attributability to desirable properties of DNNs:
Remark 3.11. If a DNN F : Rn 7! R, taking an image x 2 Rn as input, is equivariant w.r.t. to the
image contrast, it is efficiently axiomatically attributable.

This observation follows directly from the fact that contrast equivariance implies nonnegative homo-
geneity. Consequentially, contrast-equivariant DNNs for regression tasks, such as image restoration
or image super-resolution, are automatically efficiently axiomatically attributable. For classification
tasks, such as image classification or semantic segmentation, contrast equivariance of the logits at the
output implies efficient axiomatic attributability. If the classification is done using a softmax, then
this also implies contrast invariance of the classifier output. In other words, there is a close relation
between efficient axiomatic attributability and the desirable property of contrast equi-/invariance. We
further illustrate this experimentally in Sec. 4.4.

Limitations. So far, we have discussed the advantages of X -DNNs such as being able to efficiently
compute high-quality feature attributions. However, we also want to mention the limitations of
our method. First, our method can only be applied to certain DNNs satisfying Assumption 3.7.
Although this is a large class of models, our method is not completely model agnostic as other
gradient-based attribution methods. Second, removing the bias term might be disadvantageous in
certain scenarios. Intuitively, the bias term can be seen like an intercept in a linear function, and
therefore, is important to fit given data. As a matter of fact, a DNN without bias terms will always
produce a zero output for the zero input, which might be problematic. Additionally, prior work argues
that the bias term is an important factor for the predictive performance of a DNN [36]. However,
these theoretical foundations are somewhat contradictory to our own practical findings. In Sec. 4, we
show that removing the bias term has less of a negative impact than perhaps expected, indicating that
removing it can be a plausible intervention on the model architecture. As we cannot guarantee that
this holds for all DNNs, we recommend that practitioners who plan on using our method, first make a
preliminary analysis of whether removing the bias from the model at hand is plausible. Third, our
method uses implicitly the zero baseline 0. As F (0) = 0, this is a reasonable choice because it can
be interpreted as being neutral [34]. Nevertheless, other baselines could produce attributions that are
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Constructing X-DNNs - IV
• Final step: set the bias term of each layer to zero.

Table 2: Top-5 accuracy on the ImageNet [24] validation split and mean absolute relative difference
(see Appendix B.1) of Input⇥Gradient for regular DNNs resp. X -Gradient for X -DNNs to the
numerical approximation of Integrated Gradients. Note how removing the bias (X -DNN) impairs the
accuracy only marginally while reducing the mean absolute relative difference to Integrated Gradients
significantly, confirming our theoretical finding that X -Gradient equals Integrated Gradients.

Top-5 accuracy (%, ") Mean absolute relative difference (%, #)

Model AlexNet VGG16 ResNet-50 AlexNet VGG16 ResNet-50

Regular DNN 79.21 90.44 92.56 79.0 97.8 93.8
X -DNN 78.54 90.25 91.12 1.2 0.4 0.0

better suited for certain tasks [21, 33, 37]. For example, the zero baseline will generally assign lower
attribution scores to features closer to zero, which can result in misleading attributions. Whether the
advantages outweigh the disadvantages must be decided for each application, individually. In Sec. 4
we demonstrate the advantages of X -DNNs, beating state-of-the-art generic attribution methods for
training with attribution priors.

4 Experiments

To demonstrate the practicability of our proposed method, we now evaluate it in various experiments
using two different data domains to confirm the following points: (1) It is plausible to remove the
bias term in order to obtain X -DNNs. (2) Our X -Gradient method produces superior attributions
compared to other efficient gradient-based attribution methods. (3) Our X -Gradient method has
advantages over state-of-the-art generic attribution methods for training with attribution priors. (4)
X -DNNs are robust to multiplicative contrast changes.

Experimental setup. For our experiments on models for image classification, i.e., Section 4.1, 4.2
and 4.4, we use the ImageNet [24] dataset, containing about 1.2 million images of 1000 different
categories. We train on the training split and report numbers for the validation split. In Sec. 4.2 we
quantify the quality of attributions for image classification models by adapting the metrics proposed
by Lundberg et al. [15] to work with image data. These metrics reflect how well an attribution method
captures the relative importance of features by measuring the network’s accuracy or its output logit
of the target class while masking out a progressively increasing fraction of the features based on
their relative importance. For example, for the Keep Positive Mask (KPM) metric, the output logit of
the target class should stay as high as possible while progressively masking out the least important
features. As a mask we use a Gaussian blur of the original image. For a detailed description of
the metrics, please refer to [15] or Appendix B.2. If not indicated otherwise, we assume numerical
convergence for Integrated Gradients and Expected Gradients, which we found to occur after ⇠ 128
approximation steps (see Appendix B.5).

4.1 Removing the bias term in DNNs

Historically, the bias term plays an important role and almost all DNN architectures use one. In
this first experiment, we evaluate how much removing the bias to obtain an X -DNN affects the
accuracy of different DNNs. To this end, we train multiple popular image classification networks,
AlexNet [11], VGG16 [29], and the ResNet-50 variant of [40], as well as their corresponding X -DNN
variants obtained by removing the bias term, on the challenging ImageNet [24] dataset. The resulting
top-5 accuracy on the validation split is given in Table 2. As we can observe, removing the bias
decreases the accuracy of the models only marginally. This is a somewhat surprising result since
prior work indicates that the bias term in DNNs plays an important role [36]. We hypothesize that
when removing the bias term, the DNN learns some kind of layer averaging strategy that compensates
for the missing bias. For an additional comparison between a DNN with bias and its corresponding
X -DNN in a non-vision domain, see Sec. 4.3, which mirrors our findings here. Additionally, to
empirically validate our finding that X -Gradient (XG) equals Integrated Gradients for X -DNNs, we
report the mean absolute relative difference (see Appendix B.1) between the attribution obtained from
Integrated Gradients [34] and the attribution obtained from computing Input⇥Gradient for regular
DNNs resp. X -Gradient for X -DNNs over the ImageNet validation split. For regular models with
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Constructing X-DNNs - V
• Any DNN satisfying the non-neg homogenous can be transformed into 

an 𝑋 − 𝐷𝑁𝑁
• by removing the bias term of each layer. 

• Proof. 
• A 𝐷𝑁𝑁 𝐹 with 𝐿 layers with all biases bl set to 0 can be written as 
• 𝐹(𝑥) = 𝜓𝐿(𝜙𝐿(𝑊𝐿(… (𝜓1(𝜙1(𝑊1𝑥)))))).
• As all 
• pooling functions ψl, 
• activation functions φl, and 
• matrix multiplications Wl in 𝐹

• are nonnegatively homogeneous, it follows that
𝐹 (𝛼𝑥) = 𝛼𝐹(𝑥) for all 𝛼 ∈ ℝ ≥ 0. 
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Contrast-invariant DNNs are X-DNNs

• If a DNN 𝐹 ∶ ℝ𝑛 → ℝ, taking an image 𝑥 ∈ ℝ𝑛 as input,
• is equivariant 𝑤. 𝑟. 𝑡. to the image contrast, 
• it is efficiently axiomatically attributable. 

• Examples:
• contrast-equivariant DNNs for regression tasks

• image restoration
• image super-resolution

• Assuming contrast equivariance of the logits at the output
• image classification
• semantic segmentation
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Experimental Results - I
• Methods

• Integrated Gradients, 
• random attributions (Random), 
• input gradient attributions (Grad), 
• Expected Gradients (EG), and 
• the new X -Gradient (XG) attribution 

• on a regular AlexNet [40] and the corresponding X -AlexNet. 
• On par with IG in terms of quality 
• Requires 100X less computation

Table 3: Metrics of Lundberg et al. [15] to measure the attribution quality of different attribution
methods. Please refer to the experimental setup in the beginning of Sec. 4 and Appendix B.2 for
an introduction of the metrics. We evaluate Integrated Gradients (IG) [34], random attributions
(Random), input gradient attributions (Grad), Expected Gradients (EG) [7], and our novel X -Gradient
(XG) attribution on a regular AlexNet [40] and the corresponding X -AlexNet. The numbers in
parentheses indicate the required gradient calls. Our method is on par with IG in terms of quality
while requiring two orders of magnitude less computational power.

AlexNet X -AlexNet

Method KPM " KNM # KAM " RAM # KPM " KNM # KAM " RAM #
IG (128) 7.57 1.67 25.22 11.12 7.38 2.21 21.79 11.68

Random 3.68 3.68 14.12 14.10 3.81 3.81 13.52 13.50
Grad (1) 3.62 3.88 20.78 11.82 3.87 4.34 19.75 11.25

EG (1) 4.92 2.97 20.49 13.76 5.41 3.19 19.47 13.19
X G (1) N/A N/A N/A N/A 7.38 2.21 21.83 11.68

biases, Integrated Gradients produce a very different attribution compared to Input⇥Gradient. For
X -DNNs on the other hand, the two attribution methods are virtually identical, as expected. The
small deviation can be explained by the fact that the result of Integrated Gradients [34] is computed
via numerical approximation, whereas our method computes the exact integral (of course only for
X -DNNs). We make the pre-trained X -DNN models publicly available to promote a wide adoption
of efficiently axiomatically attributable models.

4.2 Benchmarking gradient-based attribution methods

As prior work [7, 14] but also our experiment in Sec. 4.3 suggest that the quality of an attribution
method positively impacts the effectiveness of attribution priors, we benchmark our method against
existing gradient-based attribution methods that are commonly used for training with attribution
priors. For evaluation, we use the metrics from [15] adapted to work with image data. Using these
metrics allows for a diverse assessment of the feature importance [15] and ensures consistency
with the experimental setup in [7]. Table 3 shows the resulting numbers for a regular AlexNet and
our corresponding X -AlexNet. Due to the axioms satisfied by the Integrated Gradients method,
it produces the best attributions for the regular network, which is in line with the results in [38].
However, as it approximates an integral where each approximation step requires an additional
gradient evaluation, it also introduces one to two orders of magnitude of computational overhead
compared to the other methods (Sundararajan et al. [34] recommend 20–300 gradient evaluations
to approximate attributions). For the X -AlexNet, however, our X -Gradient method is on par with
Integrated Gradients and produces the best attributions while requiring only one gradient evaluation,
and therefore, a fraction of the compute power. Since the input gradient and Expected Gradients [7]
with only one reference sample do not satisfy many of the desirable axioms (see Table 1), they
produce clearly lower quality attributions as expected. Note that high-qualitative attribution methods
should perform well across all the listed metrics, which is why the input gradient is not a competitive
attribution method even though it performs well on the RAM metric. To conclude, we can see that
our X -Gradient attribution yields a significant improvement in quality compared to state-of-the-art
generic attribution methods that require similar computational cost. This suggests that our effort to
produce an efficient and high-quality attribution method is justified and accomplished.

4.3 Training with attribution priors

To benchmark our approach against other attribution methods when training with attribution priors,
we replicate the sparsity experiment introduced in [7]. To that end, we employ the public NHANES I
survey data [17] of the CDC of the United States, containing 118 one-hot encoded medical attributes,
e.g., age, sex, and vital sign measurements, from 13,000 human subjects (no personally identifiable
information). The objective of the binary classification task is to predict if a human subject will be
dead (0) or alive (1) ten years after the data was measured. A simple MLP with ReLU activations
is used as the model. Therefore, it can be transformed into an X -DNN by simply removing the
bias terms. To emulate a setting of scarce training data and to average out variance, we randomly
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Scaling factor vs. Gradients

• (left) Top-1 accuracy for AlexNet on ImageNet with decreasing contrast (α). 
• (right) Qualitative examples of normalized attributions AlexNet using 

• X -Gradient (X G) resp. 
• Input×Gradient (I×G) 
• Integrated Gradients (IG). 

Image reproduced under fair use from 
https://arxiv.org/pdf/2111.07668.pdf
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Conclusions

• Special class of efficiently axiomatically attributable DNNs
• A single forward/backward pass for axiomatic attributions. 
• Nonnegatively homogeneous DNNs (X–DNNs) are efficiently 

axiomatically attributable
• ResNets, AlexNets, VGGs can be transformed into X -DNNs 
• by simply removing the bias term of each layer
• a surprisingly minor impact on the accuracy

• Can be included into the training process
• enable a wide application of IG
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