Fast Axiomatic Attribution for Neural Networks

Paper Authors: Robin Hesse, Simone Schaub-Meyer, Stefan Roth

Motivation for X -DNNs

- Trade off
 - high-quality attributions
 - satisfying axioms
 - computational time/cost
- Goal: Obviate this trade-off
- Search for a class of efficiently axiomatically attributable DNNs
 - only a single forward/backward pass for computing attributions.
- nonnegatively homogeneous DNNs or X –DNNs
 - Constructed from DNNs by removing the bias term.

Related work

- Two types of attribution methods
- Perturbation-based
 - repeatably perturb individual inputs or neurons to study impact on outcome
 - each perturbation requires a forward pass
 - Computationally inefficient
- Backpropagation-based
 - Back-propagate importance from output to input using gradients or rules
 - Gradient-based e.g. saliency, Input × Gradient, IG
 - scale high-dimensional inputs
 - implemented on GPUs
 - applied to any differentiable model
 - Rule-based
 - Layerwise Relevance Propagation (LRP)
 - predefined backpropagation rules for every NN component
 - DeepLIFT relies on a neutral baseline input
 - uses the difference of the normal activation and reference activation of each neuron.

Axiomatic attributions

• Sensitivity (a)

- for every input and baseline that differ in 1 feature with different predictions,
- the differing feature should be given a non-zero attribution.
- Sensitivity (b)
 - If a DNN does not depend (mathematically) on some variable v,
 - then the attribution for v is 0.

Implementation invariance

• attributions for 2 functionally equivalent networks are always identical.

Completeness

- attributions add up to the difference between the DNN output for
 - the input and
 - the baseline.

• Linearity

- attribution of a linearly composed deep network a F1 + b F2
- is same as the weighted sum of the attributions for F1 and F2 with weights a and b.

Symmetry preservation

• Symmetric variables with identical values receive identical attributions.

Training using attribution priors

Training objective formulated as

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} \frac{1}{|X|} \sum_{(x,y)\in X} \mathcal{L}(F_{\theta}; x, y) + \lambda \Omega(\mathcal{A}(F_{\theta}, x)),$$

- Here,
 - a model F_{θ} with parameters θ
 - trained on the dataset *X*.
 - L is the task loss,
 - Ω is a scalar-valued loss of the feature attribution A (the attribution prior)
 - $\boldsymbol{\lambda}$ controls the relative weighting
- IG can be used for A
 - but it may involve \sim 20–300 gradient calculations
 - Liu and Avci report 30X increase in training time

Efficiently axiomatically attributable DNNs

- Given a single DNN output $F : \mathbb{R}^n \to \mathbb{R}$,
- an input $x \in \mathbb{R}^n$,
- $A(F, x, x') \in \mathbb{R}^n$ is the feature attribution
 - for the prediction at input x relative to a baseline input x'
 - each element a_i is the contribution of feature x_i to the prediction F(x).
- Efficiently axiomatically attributable DNNs,
 - only a single forward/backward pass to compute IG
- A DNN $F : \mathbb{R}^n \to R$ is efficiently axiomatically attributable
 - w.r.t. a baseline $x' \in \mathbb{R}^n$,
 - if there exists a closed-form solution of Integrated Gradients $IG_i(F, x, x')$
 - along the ith dimension of $x \in \mathbb{R}^n$
 - requiring only one forward/backward pass.

Key Result - I

• For a DNN $F : \mathbb{R}^n \to \mathbb{R}$, there exists closed-form solution of $IG_i(F, x, 0)$

- w.r.t. the zero baseline $\mathbf{0} \in \mathbb{R}^n$
- requiring only one forward/backward pass,
- if F is strictly positive homogeneous of degree $k \in \mathbb{R}_{\geq 1}$,

• i.e.,
$$F(\alpha x) = \alpha^k F(x)$$
 for $\alpha \in \mathbb{R}_{>0}$.

• Proof. Definition of Integrated Gradients (IG) with baseline 0:

$$IG_{i}(F, x, \mathbf{0}) = \int_{0}^{1} \frac{\partial F(\gamma(\alpha))}{\partial \gamma_{i}(\alpha)} \frac{\partial \gamma_{i}(\alpha)}{\partial \alpha} d\alpha = \int_{0}^{1} \frac{\partial F(\alpha x)}{\partial \alpha x_{i}} \frac{\partial \alpha x_{i}}{\partial \alpha} d\alpha .$$

$$F(\alpha x) = \alpha^{k}F(x)$$

$$G_{i}(F, x, \mathbf{0}) = \lim_{\beta \to 0} \int_{\beta}^{1} \frac{\partial F(\alpha x)}{\partial \alpha x_{i}} x_{i} d\alpha = \lim_{\beta \to 0} \int_{\beta}^{1} \alpha^{k-1} \frac{\partial F(x)}{\partial x_{i}} x_{i} d\alpha = \frac{1}{k} x_{i} \frac{\partial F(x)}{\partial x_{i}}$$

Key Result - II

• Nonnegatively homogeneous DNN $F : \mathbb{R}^n \to \mathbb{R}$

 $F(\alpha x) = \alpha F(x) \text{ for all } \alpha \in \mathbb{R}_{>0}.$

- Any nonnegatively homogeneous DNN is efficiently axiomatically attributable w.r.t. the zero baseline $0 \in \mathbb{R}^n$.
- Proof Sketch: Last slide
- For any X -DNN F : ℝⁿ → ℝ, X –Gradient (XG) relative to the zero baseline 0 ∈ ℝⁿ is defined as

$$\mathcal{X}\mathbf{G}_i(F, x) = \mathrm{I}\mathbf{G}_i(F, x, \mathbf{0}) = x_i \frac{\partial F(x)}{\partial x_i}$$

Axioms re-visited

Axiom	Integrated Gradients	Expected Gradients	Expected Gradients(1)	(Input ×) Gradient	\mathcal{X} -Gradient
Sensitivity (a)		\checkmark	×	×	✓
Sensitivity (b)	1	\checkmark	\checkmark	\checkmark	\checkmark
Implementation invariance	1	\checkmark	×	\checkmark	\checkmark
Completeness	1	\checkmark	×	×	\checkmark
Linearity	1	\checkmark	×	\checkmark	\checkmark
Symmetry-preserving	\checkmark	\checkmark	×	\checkmark	1

Constructing X-DNNs

- Define a regular feedforward DNN $F : \mathbb{R}^n \to \mathbb{R}^0$, for an input $x \in \mathbb{R}^n$,
- as a recursive sequence of layers I that are applied to the output of the respective previous layer:

$$F_l(x) = \begin{cases} \psi_l \left(\phi_l \left(W_l F_{l-1}(x) + b_l \right) \right) & \text{if } l \ge 1 \\ x & \text{if } l = 0, \end{cases}$$

- with W_l and b_l being the weight matrix and bias term for layer l,
- ϕ_l being the corresponding activation function, and
- ψ_l being the corresponding pooling function.

Constructing X-DNNs

• Define a regular feedforward DNN $F : \mathbb{R}^n \to \mathbb{R}^0$, for an input $x \in \mathbb{R}^n$,

$$F_{l}(x) = \begin{cases} \psi_{l} \left(\phi_{l} \left(W_{l} F_{l-1}(x) + b_{l} \right) \right) & \text{if } l \ge 1 \\ x & \text{if } l = 0, \end{cases}$$

- Can capture VGG, AlexNet, ResNet-type architectures
- fully connected and convolutional layers = Matrix multiplications
- Skip connections = Identity matrix at future layers
- with W_l and b_l being the weight matrix and bias term for layer l,
- ϕ_l being the corresponding activation function, and
- ψ_l being the corresponding pooling function.
 - Both optional i.e. identity matrices
 - Softmax subsumed in loss function

Constructing X-DNNs - II

- Assumption for X-DNNs: the activation functions ϕ_l and pooling functions ψ_l in the model are nonnegatively homogeneous.
- Formally, for all $\alpha \in \mathbb{R}_{\geq 0}$: $\alpha \phi_l(z) = \phi_l(\alpha z)$ and $\alpha \psi_l(z) = \psi_l(\alpha z)$.
- Piecewise linear activation functions with two intervals separated by zero satisfy the above.
 - ReLU, Leaky ReLU, and PReLU.
- For $z = (z_1, ..., z_n) \in \mathbb{R}^n$, these activation functions $\phi_l : \mathbb{R}^n \to \mathbb{R}^n$ are defined as

$$\phi_l(z) = (\phi'_l(z_1), \dots, \phi'_l(z_n)) \quad \text{with} \quad \phi'_l(z_i) = \begin{cases} a_{l,1}z_i & \text{if } z_i > 0\\ a_{l,2}z_i & \text{if } z_i \le 0. \end{cases}$$

Constructing X-DNNs - III

- Linear pooling functions or pooling functions selecting values based on their relative ordering are non-neg homogenous.
 - Max/min/average pooling, global average pooling, strided convolutions
- For $z = (z_1, ..., z_n) \in \mathbb{R}^n$, these pooling functions $\psi_l : \mathbb{R}^n \to \mathbb{R}^m$ are defined as

$$\psi_l(z) = (\psi_l'(z_1'), \dots, \psi_l'(z_m')),$$

- with
 - z_i' being a grouping of entries in z based on their spatial location
 - $\psi_{I'}: \mathbb{R}^m \to \mathbb{R}$ being
 - linear or
 - a selection of a value based on its relative ordering,
 - e.g., the maximum or minimum value.

Constructing X-DNNs - IV

• Final step: set the bias term of each layer to zero.

	Top-5 accuracy $(\%, \uparrow)$				Mean absolute relative difference $(\%, \downarrow)$			
Model AlexNet VGG16 R		ResNet-50	AlexNet	VGG16	ResNet-50			
Regular DNN	79.21	90.44	92.56	79.0	97.8	93.8		
X-DNN	78.54	90.25	91.12	1.2	0.4	0.0		

Constructing X-DNNs - V

- Any DNN satisfying the non-neg homogenous can be transformed into an X – DNN
 - by removing the bias term of each layer.
- Proof.
- A DNN F with L layers with all biases b_1 set to 0 can be written as
- $F(x) = \psi_L(\phi_L(WL(...(\psi_1(\phi_1(W_1x)))))).$
- As all
 - pooling functions ψ_{l} ,
 - activation functions $\varphi_{\text{I}},$ and
 - matrix multiplications W_I in F
- are nonnegatively homogeneous, it follows that

$$F(\alpha x) = \alpha F(x)$$
 for all $\alpha \in \mathbb{R}_{>0}$

Contrast-invariant DNNs are X-DNNs

- If a DNN $F : \mathbb{R}^n \to \mathbb{R}$, taking an image $x \in \mathbb{R}^n$ as input,
- is equivariant w.r.t. to the image contrast,
- it is efficiently axiomatically attributable.
- Examples:
 - contrast-equivariant DNNs for regression tasks
 - image restoration
 - image super-resolution
 - Assuming contrast equivariance of the logits at the output
 - image classification
 - semantic segmentation

Experimental Results - I

Methods

- Integrated Gradients,
- random attributions (Random),
- input gradient attributions (Grad),
- Expected Gradients (EG), and
- the new X -Gradient (XG) attribution
- on a regular AlexNet [40] and the corresponding X -AlexNet.
- On par with IG in terms of quality
- Requires 100X less computation

_		Alex	xNet		\mathcal{X} -AlexNet				
Method	KPM ↑	$KNM\downarrow$	KAM ↑	RAM↓	KPM ↑	$\mathrm{KNM}\downarrow$	KAM ↑	RAM↓	
IG (128)	7.57	1.67	25.22	11.12	7.38	2.21	21.79	11.68	
Random Grad (1) EG (1) \mathcal{X} G (1)	3.68 3.62 4.92 N/A	3.68 3.88 2.97 N/A	14.12 20.78 20.49 N/A	14.10 11.82 13.76 N/A	3.81 3.87 5.41 7.38	3.81 4.34 3.19 2.21	13.52 19.75 19.47 21.83	13.50 11.25 13.19 11.68	

Scaling factor vs. Gradients

- (left) *Top-1 accuracy* for AlexNet on ImageNet with decreasing contrast (α).
- (right) Qualitative examples of normalized attributions AlexNet using
 - X -Gradient (X G) resp.
 - Input×Gradient (I×G)
 - Integrated Gradients (IG).

Image		SCHOOL BIS	SCHOOL BUS	1 The	1 A		
\mathcal{X}_{G} $\mathcal{X}_{\mathrm{-Al}}$							
IG exNet							
I×G Ale				And the second s			
IG xNet				and the second s			

Conclusions

- Special class of efficiently axiomatically attributable DNNs
- A single forward/backward pass for axiomatic attributions.
- Nonnegatively homogeneous DNNs (X–DNNs) are efficiently axiomatically attributable
- ResNets, AlexNets, VGGs can be transformed into X -DNNs
 - by simply removing the bias term of each layer
 - a surprisingly minor impact on the accuracy
- Can be included into the training process
 - enable a wide application of IG