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Motivation for X -DNNs

* Trade off
* high-quality attributions

 satisfying axioms
e computational time/cost

e Goal: Obviate this trade-off

* Search for a class of efficiently axiomatically attributable
DNNs

* only a single forward/backward pass for computing attributions.

* nonnegatively homogeneous DNNs or X —DNNs
* Constructed from DNNs by removing the bias term.



Related work

* Two types of attribution methods

e Perturbation-based
* repeatably perturb individual inputs or neurons to study impact on outcome
e each perturbation requires a forward pass
* Computationally inefficient

e Backpropagation-based
* Back-propagate importance from output to input using gradients or rules
* Gradient-based e.g. saliency, Input x Gradient, I1G
* scale high-dimensional inputs
* implemented on GPUs
» applied to any differentiable model

e Rule-based

* Layerwise Relevance Propagation (LRP)
* predefined backpropagation rules for every NN component




Axiomatic attributions

 Sensitivity (a)
* for every input and baseline that differ in 1 feature with different predictions,
 the differing feature should be given a non-zero attribution.

* Sensitivity (b)
* If a DNN does not depend (mathematically) on some variable v,
e then the attribution for v is O.

* Implementation invariance
* attributions for 2 functionally equivalent networks are always identical.

 Completeness

 attributions add up to the difference between the DNN output for
e theinput and
* the baseline.

* Linearity
 attribution of a linearly composed deep networka F1 + b F2
* is same as the weighted sum of the attributions for F1 and F2 with weights a and b.




Training using attribution priors

* Training objective formulated as

> L(Fp;x,y) + AQUA(Fy, 7)),

(x,y)eX

g* o
— arg min ——
o | X|

* Here,
* a model Fy with parameters 0
 trained on the dataset X.
e L is the task loss,
* Q) is a scalar-valued loss of the feature attribution A (the attribution prior)
* A\ controls the relative weighting

e |G can be used for A

* but it may involve ~ 20-300 gradient calculations
e Liu and Avci report 30X increase in training time




Efficiently axiomatically attributable DNNs

* Given a single DNN output F : R* — R,
* aninput x € R",

* A(F,x,x") € R" is the feature attribution

* for the prediction at input x relative to a baseline input x'
* each element a, is the contribution of feature x; to the prediction F(x).

* Efficiently axiomatically attributable DNNs,
 only a single forward/backward pass to compute IG

 ADNNF : R* = R is efficiently axiomatically attributable
e w.r.t. a baselinex’ € R",
* if there exists a closed-form solution of Integrated Gradients IG; (F, x, x")
* along the it dimension of x € R"



Key Result - |

* Fora DNN F : R* — R, there exists closed-form solution of I1G;(F, x, 0)

* w.r.t. the zero baseline 0 € R"
* requiring only one forward/backward pass,

* if F is strictly positive homogeneous of degree k € R,;,
*ie, F(ax) = a“F (x) fora € R,

* Proof. Definition of Integrated Gradients (IG) with baseline O:
LOF (y(a)) 07i(a) Jo — L OF (ax) Oax;

1Gi(F,2,0) = o O0v(a) da ~Jo Oaz; Oa aar.
‘ F (ax) = a*F (x)
1 1
OF OF 1 OF
IG;(F,z,0) = lim (oz) z;do=lim | ! @ 1z do = —; () .




Key Result - I

* Nonnegatively homogeneous DNN F : R" - R
F(ax) = aF(x) foralla € R .0

* Any nonnegatively homogeneous DNN is efficiently axiomatically
attributable w.r.t. the zero baseline 0 € R".

* Proof Sketch: Last slide

* Forany X-DNN F : R" - R, X —Gradient (XG) relative to the zero
baseline 0 € R"is defined as
OF (x)

XG;(F,x) = 1G;(F, z,0) = 2,
(F.2) =1Gi(F,,0) = 2




Axioms re-visited

Integrated  Expected Expected (Input x)

Axiom Gradients Gradients | Gradients(l1) Gradient A’-Gradient
Sensitivity (a) v v X X v
Sensitivity (b) v v v v v
Implementation invariance v v X v v
Completeness v v X X v
Linearity v v X v v
Symmetry-preserving v v X v v
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Constructing X-DNNs

 Define a regular feedforward DNN F : R* — RO, for an input x € R",

* as a recursive sequence of layers | that are applied to the output of
the respective previous layer:

F (z) = {il (o1 (WiFi—1(x) + bi)) ﬂ i (1)

* with W,and b, being the weight matrix and bias term for layer [,
* ¢, being the corresponding activation function, and
* 1, being the corresponding pooling function.



Constructing X-DNNs

 Define a regular feedforward DNN F : R* — RO, for an input x € R",

Fy (z) = {;bz (61 WiFi-1(z) + b)) el

* (Can capture VGG, AlexNet, ResNet—type architectures

e fully connected and convolutional layers = Matrix multiplications
e Skip connections = Identity matrix at future layers

* with W,and b, being the weight matrix and bias term for layer [,
* ¢, being the corresponding activation function, and

* 1Y, being the corresponding pooling function.




Constructing X-DNNs - ||

* Assumption for X-DNNSs: the activation functions ¢; and pooling functions
Y, in the model are nonnegatively homogeneous.

* Formally, foralla € R _ o: agi(z) = ¢gi(az) and ap(z) = Pi(az).

e Piecewise linear activation functions with two intervals separated by zero
satisfy the above.

* RelLU, Leaky RelLU, and PRelU.

*Forz = (z4,...,2z,) € R" these activation functions ¢, : R* — R"are
defined as

01(2) = (B(21), ., Bi(zn)) with (1) = {

] 1%; if z; >0
aj2z; if z; < 0.



Constructing X-DNNs - [l

* Linear pooling functions or pooling functions selecting values based
on their relative ordering are non-neq homogenous.

* Max/min/average pooling, global average pooling, strided convolutions
*Forz = (z4,...,2z,) € R" these pooling functions y); R"™ — R™are

defined as
Ui (2) = (Y1(21), - - V1(2m)5

* with
* z; being a grouping of entries in z based on their spatial location
. tpl,: R™ - R being
 linear or
» g selection of a value based on its relative ordering,




Constructing X-DNNs - IV

* Final step: set the bias term of each layer to zero.

Top-J accuracy (%, 1) Mean absolute relative difference (%, J)
Model AlexNet VGGI16  ResNet-50  AlexNet VGGI16 ResNet-50
Regular DNN  79.21 90.44 92.56 79.0 97.8 93.8
X-DNN 78.54 90.25 91.12 1.2 0.4 0.0
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Constructing X-DNNs - V

* Any DNN satisfying the non-neg homogenous can be transformed into

an X — DNN
* by removing the bias term of each layer.
* Proof.

* ADNN F with L layers with all biases b, set to O can be written as

* F(x) = Y (@, (WL(... W1(¢1(W1x)))))).

e As all

* pooling functions ¢,
* activation functions ¢,, and
* matrix multiplications W,in F

e are nonnegatively homogeneous, it follows that

D)




Contrast-invariant DNNs are X-DNNSs

 [faDNN F : R®* — R, taking an image x € R" as input,
* is equivariant w.r.t. to the image contrast,
* it is efficiently axiomatically attributable.

* Examples:

e contrast-equivariant DNNSs for regression tasks

* image restoration
* image super-resolution

e Assuming contrast equivariance of the logits at the output
* image classification



Experimental Results - |

e Methods

Integrated Gradients,
e random attributions (Random),
* input gradient attributions (Grad),
* Expected Gradients (EG), and
* the new X -Gradient (XG) attribution

* on aregular AlexNet [40] and the corresponding X -AlexNet.
* On par with IG in terms of quality
* Requires 100X less computation

AlexNet X -AlexNet
Method KPMT KNM| KAM{T RAM| KPM1T KNM| KAM{T RAM|
IG (128) 7.57 1.67 25.22 11.12 7.38 2.21 21.79 11.68

Random 3.68 3.68 14.12 14.10 3.81 3.81 13.52 13.50
Grad (1) 3.62 3.88 20.78 11.82 3.87 4.34 19.75 11.25
EG (1 4.92 2.97 20.49 13.76 5.41 3.19 19.47 13.19
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Scaling factor vs. Gradients
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Conclusions

* Special class of efficiently axiomatically attributable DNNs
* A single forward/backward pass for axiomatic attributions.

* Nonnegatively homogeneous DNNs (X—DNNs) are efficiently
axiomatically attributable

* ResNets, AlexNets, VGGs can be transformed into X -DNNs

* by simply removing the bias term of each layer
* a surprisingly minor impact on the accuracy

e Can be included into the training process



