
Self-Attention
Attribution:
Interpreting
Information

Interactions Inside
Transformer

Paper Authors: Yaru Hao, Li Dong, Furu Wei, Ke Xu

1

Image reproduced under fair use from
https://arxiv.org/pdf/2108.13654.pdf

https://arxiv.org/pdf/2108.13654.pdf

Transformer
• Pack word embeddings of an input token into a matrix X0

• The stacked L-layer Transformer computes the final output via
Xl = Transformer(Xl−1), l ∈ [1, L]

• The core component of a Transformer block is a multi-head self-
attention. The h-th self-attention head is described as:

2

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

Query
weights

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

Key
weights

Value
weights

score Ai,j indicates how
much attention token xi
puts on xj

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

MultiH(X) = [H1, · · · , H|h|] W0

Attention scores not enough
• Attention score of one of the 12 attention heads in BERT
• Score Ai,j indicates how much attention
• token xi puts on xj

• Too dense
• High 𝐴𝑖, 𝑗 does not imply pair is important

3

Image reproduced under fair use from
https://arxiv.org/pdf/2108.13654.pdf

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

https://arxiv.org/pdf/2108.13654.pdf

IG using attention

• Given input sentence x,
• let Fx(·) represent Transformer with attention weight matrix A
• Inspired by IG, we study Fx(𝐴̅) as a function of
• the internal attention scores 𝐴̅,

• Omit x as attribution is always targeted for a given input x
• F(𝐴̅)

4

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

Attribution score matrix
• Look at an arbitrary transformer layer
• and an arbitrary attention head out of A = [A1,··· ,A|h|]
• For the h-th attention head, its attribution score matrix is:

• Intuitively, (i, j)-th element of Attrh (A)
• denotes interaction between input xi and xj for the h-th attention head.

5

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

Element-wise
multiplication

Ah denotes the h-th
head’s attention
weight matrix

gradient of model F(·)
along Ah

Attribution score matrix - II
• α = 0:
• represents that all tokens do not attend to each other in a layer.

• α = 1:
• if the attention connection (i, j) has a strong influence on the prediction,
• its gradient will be salient,
• so that the integration value will be large.

• Intuitively, Attrh(A) has two properties:
• takes attention scores into account
• considers how sensitive predictions are to an attention.

6

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

Attribution Score Matrix - III

• Approximated using the Reimann approximation of the integration:

• m=20 performs well in practice

7

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

(a) Attention Score (b) Attribution Score

Figure 1: Attention score (left) and attribution score (right)
of a single head in BERT. The color is darker for larger
values. The model prediction for the sentence from MNLI
dataset is contradiction. ATTATTR tends to identify
more sparse word interactions that contribute to the final
model decision.

2 Background
2.1 Transformer
Transformer (Vaswani et al. 2017) is a model architecture
relying on the attention mechanism. Given input tokens
{xi}|x|i=1, we pack their word embeddings to a matrix X

0
=

[x1, · · · , x|x|]. The stacked L-layer Transformer computes
the final output via X

l
= Transformerl(X

l�1
), l 2 [1, L].

The core component of a Transformer block is multi-head
self-attention. The h-th self-attention head is described as:

Qh = XW
Q
h , K = XW

K
h , V = XW

V
h (1)

Ah = softmax(
QhK

|
hp

dk
) (2)

Hh = AttentionHead(X) = AhVh (3)

where Q,K 2 Rn⇥dk , V 2 Rn⇥dv , and the score Ai,j

indicates how much attention token xi puts on xj . There
are usually multiple attention heads in a Transformer block.
The attention heads follow the same computation despite us-
ing different parameters. Let |h| denote the number of at-
tention heads in each layer, the output of multi-head atten-
tion is given by MultiH(X) = [H1, · · · , H|h|]W

o, where
W

o 2 R|h|dv⇥dx , [·] means concatenation, and Hi is com-
puted as in Equation (3).

2.2 BERT
We conduct all experiments on BERT (Devlin et al. 2019),
which is one of the most successful applications of Trans-
former. The pretrained language model is based on bidirec-
tional Transformer, which can be fine-tuned towards down-
stream tasks. Notice that our method can also be applied

to other multi-layer Transformer models with few modifi-
cations. For single input, a special token [CLS] is added to
the beginning of the sentence, and another token [SEP] is
added to the end. For pairwise input, [SEP] is also added as
a separator between the two sentences. When BERT is fine-
tuned on classification tasks, a softmax classifier is added on
top of the [CLS] token in the last layer to make predictions.

3 Methods: Self-Attention Attribution
Figure 1a shows attention scores of one head in fine-tuned
BERT. We observe that the attention score matrix is quite
dense, although only one of twelve heads is plotted. It poses
a huge burden on us to understand how words interact with
each other within Transformer. Moreover, even if an atten-
tion score is large, it does not mean the pair of words is im-
portant to model decisions. In contrast, we aim at attributing
model decisions to self-attention relations, which tends to
assign higher scores if the interaction contributes more to
the final prediction.

Given input sentence x, let Fx(·) represent the Trans-
former model, which takes the attention weight matrix A

(Equation (2)) as the model input. Inspired by Sundararajan,
Taly, and Yan (2017), we manipulate the internal attention
scores Ā, and observe the corresponding model dynamics
Fx(Ā) to inspect the contribution of word interactions. As
the attribution is always targeted for a given input x, we omit
it for the simplicity of notations.

Let us take one Transformer layer as an example to de-
scribe self-attention attribution. Our goal is to calculate an
attribution score for each attention connection. For the h-th
attention head, we compute its attribution score matrix as:

A = [A1, · · · , A|h|]

Attrh(A) = Ah �
Z 1

↵=0

@F(↵A)

@Ah
d↵ 2 Rn⇥n

where � is element-wise multiplication, Ah 2 Rn⇥n de-
notes the h-th head’s attention weight matrix (Equation (2)),
and @F(↵A)

@Ah
computes the gradient of model F(·) along Ah.

The (i, j)-th element of Attrh(A) is computed for the inter-
action between input token xi and xj in terms of the h-th
attention head.

The starting point (↵ = 0) of the integration represents
that all tokens do not attend to each other in a layer. When ↵

changes from 0 to 1, if the attention connection (i, j) has a
great influence on the model prediction, its gradient will be
salient, so that the integration value will be correspondingly
large. Intuitively, Attrh(A) not only takes attention scores
into account, but also considers how sensitive model predic-
tions are to an attention relation.

The attribution score can be efficiently computed via
Riemman approximation of the integration (Sundararajan,
Taly, and Yan 2017). Specifically, we sum the gradients
at points occurring at sufficiently small intervals along the
straightline path from the zero attention matrix to the origi-
nal attention weight A:

˜Attrh(A) =
Ah

m
�

mX

k=1

@F(
k
mA)

@Ah
(4)

Attribution
Score Matrix:
Motivating
Example

8

contradiction
class

Image
reproduced
under fair
use from

https://arxiv.
org/pdf/210
8.13654.pdf

https://arxiv.org/pdf/2108.13654.pdf
https://arxiv.org/pdf/2108.13654.pdf
https://arxiv.org/pdf/2108.13654.pdf

Experiments: Design
• BERT-base-cased (Devlin et al. 2019)

• BERT layers |l| = 12,
• attention heads in each layer |h| = 12,
• size of hidden embeddings |h|dv = 768.

• For a sequence of 128 tokens, the attribution time is 1 second on an Nvidia
V100.
• Perform BERT fine-tuning for 4 downstream classification datasets:

• MNLI or Multi-genre Natural Language Inference is to predict
• Entailment
• Contradiction
• Neutral

• RTE or Recognizing Textual Entailment
• SST-2 or Stanford Sentiment Treebank

• predicts polarity of a given sentence.
• MRPC or Microsoft Research Paraphrase Corpus

• predicts whether pairwise sentences are semantically equivalent.

9

Experiments: Effectiveness Analysis
• Prune attention heads

incrementally
• in each layer
• according to their attribution

scores
• with respect to the golden

label and
• record the performance

change.

• Baseline
• Prune heads with their

average attention scores
• for comparison.

10
Image reproduced under fair use from
https://arxiv.org/pdf/2108.13654.pdf

https://arxiv.org/pdf/2108.13654.pdf

Experiments: Attention Head Pruning

• Importance of attention head:

• where
• x represents the examples sampled from the held-out set,
• max(Attrh(A)) is the maximum attribution value of the h-th attention head.
• Probability of the golden label on a held-out set.

• Baseline: accuracy difference and the Taylor expansion

11

where m is the number of approximation steps. In our ex-
periments, we set m to 20, which performs well in practice.

Figure 1 is an example about the attention score map
and the attribution score map of a single head in fine-tuned
BERT. We demonstrate that larger attention scores do not
mean more contribution to the final prediction. The atten-
tion scores between the [SEP] token and other tokens are
relatively large, but they obtain little attribution scores. The
prediction of the contradiction class attributes most to
the connections between “don’t” in the first segment and “I
know” in the second segment, which is more explainable.

4 Experiments
We employ BERT-base-cased (Devlin et al. 2019) in our ex-
periments. The number of BERT layers |l| = 12, the num-
ber of attention heads in each layer |h| = 12, and the size
of hidden embeddings |h|dv = 768. For a sequence of 128
tokens, the attribution time of the BERT-base model takes
about one second on an Nvidia-v100 GPU card. Moreover,
the computation can be parallelized by batching multiple in-
put examples to increase throughput.

We perform BERT fine-tuning and conduct experiments
on four downstream classification datasets:
MNLI (Williams, Nangia, and Bowman 2018) Multi-genre
Natural Language Inference is to predict whether a premise
entails the hypothesis (entailment), contradicts the given hy-
pothesis (contradiction), or neither (neutral).
RTE (Dagan, Glickman, and Magnini 2006; Bar-Haim et al.
2006; Giampiccolo et al. 2007; Bentivogli et al. 2009) Rec-
ognizing Textual Entailment comes from a series of annual
textual entailment challenges.
SST-2 (Socher et al. 2013) Stanford Sentiment Treebank is
to predict the polarity of a given sentence.
MRPC (Dolan and Brockett 2005) Microsoft Research
Paraphrase Corpus is to predict whether the pairwise sen-
tences are semantically equivalent.

We use the same data split as in (Wang et al. 2019). The
accuracy metric is used for evaluation. When fine-tuning
BERT, we follow the settings and the hyper-parameters sug-
gested in (Devlin et al. 2019).

4.1 Effectiveness Analysis
We conduct a quantitative analysis to justify the self-
attention edges with larger attribution scores contribute more
to the model decision. We prune the attention heads incre-
mentally in each layer according to their attribution scores
with respect to the golden label and record the performance
change. We also establish a baseline that prunes attention
heads with their average attention scores for comparison.

Experimental results are presented in Figure 2, we ob-
serve that pruning heads with attributions scores conduces
more salient changes on the performance. Pruning only two
heads within every layer with the top-2 attribution scores can
cause an extreme decrease in the model accuracy. In con-
trast, retaining them helps the model to achieve nearly 97%
accuracy. Even if only two heads are retained in each layer,
the model can still have a strong performance. Compared

Figure 2: Effectiveness analysis of ATTATTR. The blue and
red lines represent pruning attention heads according to at-
tribution scores, and attention scores, respectively. The solid
lines mean the attention heads with the smallest values are
pruned first, while the dash lines mean the largest values are
pruned first. The results show that ATTATTR better indicates
the importance of attention heads.

with attribution scores, pruning heads with average atten-
tion scores are less remarkable on the performance change,
which proves the effectiveness of our method.

4.2 Use Case 1: Attention Head Pruning
According to the previous section, only a small part of atten-
tion heads contribute to the final prediction, while others are
less helpful. This leads us to the research about identifying
and pruning the unimportant attention heads.

Head Importance The attribution scores indicate how
much a self-attention edge attributes to the final model deci-
sion. We define the importance of an attention head as:

Ih = Ex[max(Attrh(A))] (5)

where x represents the examples sampled from the held-out
set, and max(Attrh(A)) is the maximum attribution value
of the h-th attention head. Notice that the attribution value
of a head is computed with respect to the probability of the
golden label on a held-out set.

We compare our method with other importance metrics
based on the accuracy difference and the Taylor expan-
sion, which are both proposed in (Michel, Levy, and Neu-
big 2019). The accuracy difference of an attention head is
the accuracy margin before and after pruning the head. The
method based on the Taylor expansion defines the impor-
tance of an attention head as:

Ih = Ex

����A
|
h

@L(x)
@Ah

���� (6)

where L(x) is the loss function of example x, and Ah is the
attention score of the h-th head as in Equation (2).

where m is the number of approximation steps. In our ex-
periments, we set m to 20, which performs well in practice.

Figure 1 is an example about the attention score map
and the attribution score map of a single head in fine-tuned
BERT. We demonstrate that larger attention scores do not
mean more contribution to the final prediction. The atten-
tion scores between the [SEP] token and other tokens are
relatively large, but they obtain little attribution scores. The
prediction of the contradiction class attributes most to
the connections between “don’t” in the first segment and “I
know” in the second segment, which is more explainable.

4 Experiments
We employ BERT-base-cased (Devlin et al. 2019) in our ex-
periments. The number of BERT layers |l| = 12, the num-
ber of attention heads in each layer |h| = 12, and the size
of hidden embeddings |h|dv = 768. For a sequence of 128
tokens, the attribution time of the BERT-base model takes
about one second on an Nvidia-v100 GPU card. Moreover,
the computation can be parallelized by batching multiple in-
put examples to increase throughput.

We perform BERT fine-tuning and conduct experiments
on four downstream classification datasets:
MNLI (Williams, Nangia, and Bowman 2018) Multi-genre
Natural Language Inference is to predict whether a premise
entails the hypothesis (entailment), contradicts the given hy-
pothesis (contradiction), or neither (neutral).
RTE (Dagan, Glickman, and Magnini 2006; Bar-Haim et al.
2006; Giampiccolo et al. 2007; Bentivogli et al. 2009) Rec-
ognizing Textual Entailment comes from a series of annual
textual entailment challenges.
SST-2 (Socher et al. 2013) Stanford Sentiment Treebank is
to predict the polarity of a given sentence.
MRPC (Dolan and Brockett 2005) Microsoft Research
Paraphrase Corpus is to predict whether the pairwise sen-
tences are semantically equivalent.

We use the same data split as in (Wang et al. 2019). The
accuracy metric is used for evaluation. When fine-tuning
BERT, we follow the settings and the hyper-parameters sug-
gested in (Devlin et al. 2019).

4.1 Effectiveness Analysis
We conduct a quantitative analysis to justify the self-
attention edges with larger attribution scores contribute more
to the model decision. We prune the attention heads incre-
mentally in each layer according to their attribution scores
with respect to the golden label and record the performance
change. We also establish a baseline that prunes attention
heads with their average attention scores for comparison.

Experimental results are presented in Figure 2, we ob-
serve that pruning heads with attributions scores conduces
more salient changes on the performance. Pruning only two
heads within every layer with the top-2 attribution scores can
cause an extreme decrease in the model accuracy. In con-
trast, retaining them helps the model to achieve nearly 97%
accuracy. Even if only two heads are retained in each layer,
the model can still have a strong performance. Compared

Figure 2: Effectiveness analysis of ATTATTR. The blue and
red lines represent pruning attention heads according to at-
tribution scores, and attention scores, respectively. The solid
lines mean the attention heads with the smallest values are
pruned first, while the dash lines mean the largest values are
pruned first. The results show that ATTATTR better indicates
the importance of attention heads.

with attribution scores, pruning heads with average atten-
tion scores are less remarkable on the performance change,
which proves the effectiveness of our method.

4.2 Use Case 1: Attention Head Pruning
According to the previous section, only a small part of atten-
tion heads contribute to the final prediction, while others are
less helpful. This leads us to the research about identifying
and pruning the unimportant attention heads.

Head Importance The attribution scores indicate how
much a self-attention edge attributes to the final model deci-
sion. We define the importance of an attention head as:

Ih = Ex[max(Attrh(A))] (5)

where x represents the examples sampled from the held-out
set, and max(Attrh(A)) is the maximum attribution value
of the h-th attention head. Notice that the attribution value
of a head is computed with respect to the probability of the
golden label on a held-out set.

We compare our method with other importance metrics
based on the accuracy difference and the Taylor expan-
sion, which are both proposed in (Michel, Levy, and Neu-
big 2019). The accuracy difference of an attention head is
the accuracy margin before and after pruning the head. The
method based on the Taylor expansion defines the impor-
tance of an attention head as:

Ih = Ex

����A
|
h

@L(x)
@Ah

���� (6)

where L(x) is the loss function of example x, and Ah is the
attention score of the h-th head as in Equation (2).

Experiment:
Attention
Head
Pruning II

12

Image
reproduced

under fair use
from

https://arxiv.or
g/pdf/2108.13

654.pdf

https://arxiv.org/pdf/2108.13654.pdf
https://arxiv.org/pdf/2108.13654.pdf
https://arxiv.org/pdf/2108.13654.pdf

Important
heads similar
for similar
tasks

13

Image
reproduced

under fair use
from

https://arxiv.or
g/pdf/2108.13

654.pdf

https://arxiv.org/pdf/2108.13654.pdf
https://arxiv.org/pdf/2108.13654.pdf
https://arxiv.org/pdf/2108.13654.pdf

Visualizing information flow inside transformer
• Attribution for the lth layer:

• larger al
i,j implies more interaction between xi and xj

• in the l-th layer
• in terms of the final predictions.

• Attribution tree: a tradeoff between size and accuracy

14

Algorithm 1 Attribution Tree Construction

Input: [al
i,j]n⇥n

: Attribution scores

{El}|l|l=1: Retained attribution edges
Output: V, E : Node set and edge set of Attr tree

1: . Initialize the state of all tokens, each token has three states:
NotAppear, Appear, Fixed

2: for i n, · · · , 1 do
3: Statei = NotAppear

4: . Choose the top node of the attribution tree
5: [AttrAlli]n =

P|l|
l=1

Pn
j=1,j 6=i a

l
i,j

6: TopNode = argmax([AttrAlli]n)
7: V {TopNode}; StateTopNode = Appear
8: . Build the attribution tree downward
9: for l |l|� 1, · · · , 1 do

10: for (i, j)li 6=j 2 El do
11: if Statei is Appear and Statej is NotAppear then
12: E E

S
{(i, j)}

13: V V
S
{j}

14: Statei = Fixed
15: Statej = Appear

16: if Statei is Fixed and Statej is NotAppear then
17: E E

S
{(i, j)}

18: V V
S
{j}

19: Statej = Appear

20: . Add the terminal of the information flow
21: V {[CLS]}
22: for j n, · · · , 1 do
23: if Statej 2 {Appear, Fixed} then
24: E E

S
{([CLS], j)}

25: return Tree = {V, E}

visualization can provide insights to understand what depen-
dencies Transformer tends to capture.

For each layer l, we first calculate self-attention attribu-
tion scores of different heads. Then we sum them up over
the heads, and use the results as the l-th layer’s attribution:

Attr(A
l
) =

|h|X

h=1

Attrh(A
l
) = [a

l
i,j]n⇥n

where larger ali,j indicates more interaction between xi and
xj in the l-th layer in terms of the final model predictions.

The construction of attribution trees is a trade-off between
maximizing the summation of attribution scores and min-
imizing the number of edges in the tree. The objective is
defined as:

Tree = argmax

{El}|l|
l=1

|l|X

l=1

X

(i,j)2El

a
l
i,j � �

|l|X

l=1

|El|,

E
l ⇢ {(i, j)|

a
l
i,j

max(Attr(Al))
> ⌧}

where |El| represents the number of edges in the l-th layer,
� is a trade-off weight, and the threshold ⌧ is used to filter
the interactions with relatively large attribution scores.

Rather than solving a combinatorial optimization prob-
lem, we use a heuristic top-down method to add these edges

to that

supplement

so I have to find a way to supplement that I need a way to add something extra .

have

way

need add

something

to

extra

[CLS]

way a

(a) Example from MNLI

themovie
seldom has a movie so closely matched the spirit of a man and his work .

seldom

spirit

workso

[CLS]

has

closely

matched

of

man

(b) Example from SST-2

Figure 5: Examples of attribution trees. (a) is from MNLI,
which is predicted as entailment by BERT. (b) is from
SST-2, which is predicted as positive by BERT. The grey
words from the inputs do not appear in the attribution trees.

to the attribution tree. The process is detailed in Algorithm 1.
The more detailed related explanations are in the appendix.

Settings We set ⌧ = 0.4 for layers l < 12. The larger
⌧ tends to generate more simplified trees, which contains
the more important part of the information flow. Because
the special token [CLS] is the terminal of the information
flow for classification tasks, we set ⌧ to 0 for the last layer.
We observe that almost all connections between [CLS] and
other tokens in the last layer have positive attribution scores
with respect to model predictions.

Case Studies As shown in Figure 5, the two attribution
trees are from MNLI and SST-2, respectively. The attribu-
tion tree Figure 5a is generated from MNLI, whose golden
label is entailment. At the bottom of Figure 5a, we find
that the interactions are more local, and most information
flows are concentrated within a single sentence. The in-
formation is hierarchically aggregated to “supplement” and
“extra” in each sentence. Then the “supplement” token ag-
gregates the information in the first sentence and “add some-
thing extra” in the second sentence, these two parts “supple-
ment” and “add something extra” have strong semantic rele-
vance. Finally, all the information flows to the terminal token
[CLS] to make the prediction entailment. The attribu-
tion tree interprets how the input words interacts with each

Algorithm 1 Attribution Tree Construction

Input: [al
i,j]n⇥n

: Attribution scores

{El}|l|l=1: Retained attribution edges
Output: V, E : Node set and edge set of Attr tree

1: . Initialize the state of all tokens, each token has three states:
NotAppear, Appear, Fixed

2: for i n, · · · , 1 do
3: Statei = NotAppear

4: . Choose the top node of the attribution tree
5: [AttrAlli]n =

P|l|
l=1

Pn
j=1,j 6=i a

l
i,j

6: TopNode = argmax([AttrAlli]n)
7: V {TopNode}; StateTopNode = Appear
8: . Build the attribution tree downward
9: for l |l|� 1, · · · , 1 do

10: for (i, j)li 6=j 2 El do
11: if Statei is Appear and Statej is NotAppear then
12: E E

S
{(i, j)}

13: V V
S
{j}

14: Statei = Fixed
15: Statej = Appear

16: if Statei is Fixed and Statej is NotAppear then
17: E E

S
{(i, j)}

18: V V
S
{j}

19: Statej = Appear

20: . Add the terminal of the information flow
21: V {[CLS]}
22: for j n, · · · , 1 do
23: if Statej 2 {Appear, Fixed} then
24: E E

S
{([CLS], j)}

25: return Tree = {V, E}

visualization can provide insights to understand what depen-
dencies Transformer tends to capture.

For each layer l, we first calculate self-attention attribu-
tion scores of different heads. Then we sum them up over
the heads, and use the results as the l-th layer’s attribution:

Attr(A
l
) =

|h|X

h=1

Attrh(A
l
) = [a

l
i,j]n⇥n

where larger ali,j indicates more interaction between xi and
xj in the l-th layer in terms of the final model predictions.

The construction of attribution trees is a trade-off between
maximizing the summation of attribution scores and min-
imizing the number of edges in the tree. The objective is
defined as:

Tree = argmax

{El}|l|
l=1

|l|X

l=1

X

(i,j)2El

a
l
i,j � �

|l|X

l=1

|El|,

E
l ⇢ {(i, j)|

a
l
i,j

max(Attr(Al))
> ⌧}

where |El| represents the number of edges in the l-th layer,
� is a trade-off weight, and the threshold ⌧ is used to filter
the interactions with relatively large attribution scores.

Rather than solving a combinatorial optimization prob-
lem, we use a heuristic top-down method to add these edges

to that

supplement

so I have to find a way to supplement that I need a way to add something extra .

have

way

need add

something

to

extra

[CLS]

way a

(a) Example from MNLI

themovie
seldom has a movie so closely matched the spirit of a man and his work .

seldom

spirit

workso

[CLS]

has

closely

matched

of

man

(b) Example from SST-2

Figure 5: Examples of attribution trees. (a) is from MNLI,
which is predicted as entailment by BERT. (b) is from
SST-2, which is predicted as positive by BERT. The grey
words from the inputs do not appear in the attribution trees.

to the attribution tree. The process is detailed in Algorithm 1.
The more detailed related explanations are in the appendix.

Settings We set ⌧ = 0.4 for layers l < 12. The larger
⌧ tends to generate more simplified trees, which contains
the more important part of the information flow. Because
the special token [CLS] is the terminal of the information
flow for classification tasks, we set ⌧ to 0 for the last layer.
We observe that almost all connections between [CLS] and
other tokens in the last layer have positive attribution scores
with respect to model predictions.

Case Studies As shown in Figure 5, the two attribution
trees are from MNLI and SST-2, respectively. The attribu-
tion tree Figure 5a is generated from MNLI, whose golden
label is entailment. At the bottom of Figure 5a, we find
that the interactions are more local, and most information
flows are concentrated within a single sentence. The in-
formation is hierarchically aggregated to “supplement” and
“extra” in each sentence. Then the “supplement” token ag-
gregates the information in the first sentence and “add some-
thing extra” in the second sentence, these two parts “supple-
ment” and “add something extra” have strong semantic rele-
vance. Finally, all the information flows to the terminal token
[CLS] to make the prediction entailment. The attribu-
tion tree interprets how the input words interacts with each

Here,
• |El| represents # edges in the l-th layer,
• λ is a trade-off weight,
• τ is a threshold to filter interactions with large

attribution scores.

Visualizing Information Flow: MLNI example

15

Algorithm 1 Attribution Tree Construction

Input: [al
i,j]n⇥n

: Attribution scores

{El}|l|l=1: Retained attribution edges
Output: V, E : Node set and edge set of Attr tree

1: . Initialize the state of all tokens, each token has three states:
NotAppear, Appear, Fixed

2: for i n, · · · , 1 do
3: Statei = NotAppear

4: . Choose the top node of the attribution tree
5: [AttrAlli]n =

P|l|
l=1

Pn
j=1,j 6=i a

l
i,j

6: TopNode = argmax([AttrAlli]n)
7: V {TopNode}; StateTopNode = Appear
8: . Build the attribution tree downward
9: for l |l|� 1, · · · , 1 do

10: for (i, j)li 6=j 2 El do
11: if Statei is Appear and Statej is NotAppear then
12: E E

S
{(i, j)}

13: V V
S
{j}

14: Statei = Fixed
15: Statej = Appear

16: if Statei is Fixed and Statej is NotAppear then
17: E E

S
{(i, j)}

18: V V
S
{j}

19: Statej = Appear

20: . Add the terminal of the information flow
21: V {[CLS]}
22: for j n, · · · , 1 do
23: if Statej 2 {Appear, Fixed} then
24: E E

S
{([CLS], j)}

25: return Tree = {V, E}

visualization can provide insights to understand what depen-
dencies Transformer tends to capture.

For each layer l, we first calculate self-attention attribu-
tion scores of different heads. Then we sum them up over
the heads, and use the results as the l-th layer’s attribution:

Attr(A
l
) =

|h|X

h=1

Attrh(A
l
) = [a

l
i,j]n⇥n

where larger ali,j indicates more interaction between xi and
xj in the l-th layer in terms of the final model predictions.

The construction of attribution trees is a trade-off between
maximizing the summation of attribution scores and min-
imizing the number of edges in the tree. The objective is
defined as:

Tree = argmax

{El}|l|
l=1

|l|X

l=1

X

(i,j)2El

a
l
i,j � �

|l|X

l=1

|El|,

E
l ⇢ {(i, j)|

a
l
i,j

max(Attr(Al))
> ⌧}

where |El| represents the number of edges in the l-th layer,
� is a trade-off weight, and the threshold ⌧ is used to filter
the interactions with relatively large attribution scores.

Rather than solving a combinatorial optimization prob-
lem, we use a heuristic top-down method to add these edges

to that

supplement

so I have to find a way to supplement that I need a way to add something extra .

have

way

need add

something

to

extra

[CLS]

way a

(a) Example from MNLI

themovie
seldom has a movie so closely matched the spirit of a man and his work .

seldom

spirit

workso

[CLS]

has

closely

matched

of

man

(b) Example from SST-2

Figure 5: Examples of attribution trees. (a) is from MNLI,
which is predicted as entailment by BERT. (b) is from
SST-2, which is predicted as positive by BERT. The grey
words from the inputs do not appear in the attribution trees.

to the attribution tree. The process is detailed in Algorithm 1.
The more detailed related explanations are in the appendix.

Settings We set ⌧ = 0.4 for layers l < 12. The larger
⌧ tends to generate more simplified trees, which contains
the more important part of the information flow. Because
the special token [CLS] is the terminal of the information
flow for classification tasks, we set ⌧ to 0 for the last layer.
We observe that almost all connections between [CLS] and
other tokens in the last layer have positive attribution scores
with respect to model predictions.

Case Studies As shown in Figure 5, the two attribution
trees are from MNLI and SST-2, respectively. The attribu-
tion tree Figure 5a is generated from MNLI, whose golden
label is entailment. At the bottom of Figure 5a, we find
that the interactions are more local, and most information
flows are concentrated within a single sentence. The in-
formation is hierarchically aggregated to “supplement” and
“extra” in each sentence. Then the “supplement” token ag-
gregates the information in the first sentence and “add some-
thing extra” in the second sentence, these two parts “supple-
ment” and “add something extra” have strong semantic rele-
vance. Finally, all the information flows to the terminal token
[CLS] to make the prediction entailment. The attribu-
tion tree interprets how the input words interacts with each

Entailment

Image reproduced under fair use from
https://arxiv.org/pdf/2108.13654.pdf

https://arxiv.org/pdf/2108.13654.pdf

Visualizing Information Flow: SST-2 example

16

Positive

Algorithm 1 Attribution Tree Construction

Input: [al
i,j]n⇥n

: Attribution scores

{El}|l|l=1: Retained attribution edges
Output: V, E : Node set and edge set of Attr tree

1: . Initialize the state of all tokens, each token has three states:
NotAppear, Appear, Fixed

2: for i n, · · · , 1 do
3: Statei = NotAppear

4: . Choose the top node of the attribution tree
5: [AttrAlli]n =

P|l|
l=1

Pn
j=1,j 6=i a

l
i,j

6: TopNode = argmax([AttrAlli]n)
7: V {TopNode}; StateTopNode = Appear
8: . Build the attribution tree downward
9: for l |l|� 1, · · · , 1 do

10: for (i, j)li 6=j 2 El do
11: if Statei is Appear and Statej is NotAppear then
12: E E

S
{(i, j)}

13: V V
S
{j}

14: Statei = Fixed
15: Statej = Appear

16: if Statei is Fixed and Statej is NotAppear then
17: E E

S
{(i, j)}

18: V V
S
{j}

19: Statej = Appear

20: . Add the terminal of the information flow
21: V {[CLS]}
22: for j n, · · · , 1 do
23: if Statej 2 {Appear, Fixed} then
24: E E

S
{([CLS], j)}

25: return Tree = {V, E}

visualization can provide insights to understand what depen-
dencies Transformer tends to capture.

For each layer l, we first calculate self-attention attribu-
tion scores of different heads. Then we sum them up over
the heads, and use the results as the l-th layer’s attribution:

Attr(A
l
) =

|h|X

h=1

Attrh(A
l
) = [a

l
i,j]n⇥n

where larger ali,j indicates more interaction between xi and
xj in the l-th layer in terms of the final model predictions.

The construction of attribution trees is a trade-off between
maximizing the summation of attribution scores and min-
imizing the number of edges in the tree. The objective is
defined as:

Tree = argmax

{El}|l|
l=1

|l|X

l=1

X

(i,j)2El

a
l
i,j � �

|l|X

l=1

|El|,

E
l ⇢ {(i, j)|

a
l
i,j

max(Attr(Al))
> ⌧}

where |El| represents the number of edges in the l-th layer,
� is a trade-off weight, and the threshold ⌧ is used to filter
the interactions with relatively large attribution scores.

Rather than solving a combinatorial optimization prob-
lem, we use a heuristic top-down method to add these edges

to that

supplement

so I have to find a way to supplement that I need a way to add something extra .

have

way

need add

something

to

extra

[CLS]

way a

(a) Example from MNLI

themovie
seldom has a movie so closely matched the spirit of a man and his work .

seldom

spirit

workso

[CLS]

has

closely

matched

of

man

(b) Example from SST-2

Figure 5: Examples of attribution trees. (a) is from MNLI,
which is predicted as entailment by BERT. (b) is from
SST-2, which is predicted as positive by BERT. The grey
words from the inputs do not appear in the attribution trees.

to the attribution tree. The process is detailed in Algorithm 1.
The more detailed related explanations are in the appendix.

Settings We set ⌧ = 0.4 for layers l < 12. The larger
⌧ tends to generate more simplified trees, which contains
the more important part of the information flow. Because
the special token [CLS] is the terminal of the information
flow for classification tasks, we set ⌧ to 0 for the last layer.
We observe that almost all connections between [CLS] and
other tokens in the last layer have positive attribution scores
with respect to model predictions.

Case Studies As shown in Figure 5, the two attribution
trees are from MNLI and SST-2, respectively. The attribu-
tion tree Figure 5a is generated from MNLI, whose golden
label is entailment. At the bottom of Figure 5a, we find
that the interactions are more local, and most information
flows are concentrated within a single sentence. The in-
formation is hierarchically aggregated to “supplement” and
“extra” in each sentence. Then the “supplement” token ag-
gregates the information in the first sentence and “add some-
thing extra” in the second sentence, these two parts “supple-
ment” and “add something extra” have strong semantic rele-
vance. Finally, all the information flows to the terminal token
[CLS] to make the prediction entailment. The attribu-
tion tree interprets how the input words interacts with each

Image reproduced under fair use from
https://arxiv.org/pdf/2108.13654.pdf

https://arxiv.org/pdf/2108.13654.pdf

Adversarial
attacks using
over-
confident
patterns

17

(a) MNLI (b) SST-2

Figure 6: Distance distribution of interactions extracted by
the attribution tree in each layers.

other, and reach the final prediction, which makes model de-
cisions more interpretable.

Figure 5b is an example from SST-2, whose golden label
is positive, correctly predicted by the model. From Fig-
ure 5b, we observe that information in the first part of the
sentence “seldom has a movie so closely” is aggregated to
the “has” token. Similarly, information in the other part of
the sentence “the spirit of a man and his work” flows to the
“spirit” token, which has strong positive emotional tenden-
cies. Finally, with the feature interactions, all information
aggregates to the verb “matched”, which gives us a better
understanding of why the model makes the specific decision.

Receptive Field The self-attention mechanism is sup-
posed to have the ability to capture long-range dependen-
cies. In order to better understand the layer-wise effective
receptive field in Transformer, we plot the distance distri-
bution of interactions extracted by the attribution tree. As
shown in Figure 6, we observe that for the paired input of
MNLI, the effective receptive field is relatively local in the
first two layers and the 6-8th layers, while are more broad in
the top three layers. For the single input of SST-2, the effec-
tive receptive field is monotonically increasing along with
the layer number. Generally, the effective receptive field in
the second layer is more restricted, while the latter layers
extract more broad dependencies. Moreover, for pairwise-
input tasks (such as MNLI), the results indicate that Trans-
former models tend to first conduct local encoding and then
learn to match between the pair of input sentences, which is
different with training from scratch (Bao et al. 2019).

4.4 Use Case 3: Adversarial Attack
The model decision attributes more to the attention con-
nections with larger attribution scores. We observe that the
model tends to over-emphasize some individual patterns
to make the prediction, while omitting most of the input.
We then use the over-confident patterns as adversarial trig-
gers (Wallace et al. 2019) to attack the BERT model.

[CLS] And what about floods in North Dakota and Iowa or fires
in Oakland , Cal ##if . , and Daytona Beach , F ##la . ? [SEP]

Daytona Beach , Florida suffered an ice - storm in July . [SEP]

[CLS] the ho ##log ##ram makes up all floods these things and
uh i mean sometimes sometimes it Iowa ' s funny sometimes it
' s not but uh you know it ' s something to pass the time until
we do and then and then we watch football [SEP]
Sometimes it is amusing to Florida see what the ice ho ##log
##ram creates . [SEP]

Prediction: Entailment → Contradiction

[CLS] We also have found floods that leading organizations s
Iowa ##tri ##ve to ensure that their core processes efficiently
and effectively support mission - related outcomes . [SEP]
Leading organizations want to Florida be sure their ice
employees are safe . [SEP]

Prediction: Neutral → Contradiction

Source Trigger

Prediction: Contradiction

A
tt

ac
k

A
ttack

Figure 7: We use ATTATTR to extract the trigger (i.e., high-
lighted word patterns) from the MNLI instance that is la-
beled as contradict. After adding the adversarial trigger
to the examples in other categories, the model predictions
flip from neutral and entailment to contradict.

Trigger Construction We extract the attention dependen-
cies with the largest attribution scores across different layers
(i.e., max

L
l=1 {ali,j}) from the input, and employ these pat-

terns as the adversarial triggers. During the attack, the ad-
versarial triggers are inserted into the test input at the same
relative position and segment as in the original sentence.

The specific attack process is shown in Figure 7. The two
patterns “floods-ice” and “Iowa-Florida” contribute most
to the prediction contradict in the source sentence.
Next we employ them as the trigger to attack other exam-
ples, the model predictions flip from both neutral and
entailment to contradict. Our attack method relies
on attribution scores, which utilizes the gradient informa-
tion, therefore it belongs to white-box non-targeted attacks.

We extract the dependencies with the largest attribution
scores as the adversarial triggers from 3,000 input exam-
ples. Each trigger contains less than five tokens. The score of
a trigger is defined as the maximum attribution value iden-
tified within it. When attacking the BERT model on SST-
2, we use a lexicon1 to blacklist the words with the obvi-
ous emotional tendencies (such as “disgust” for negative
triggers). The adversarial triggers are inserted into the attack
text at the same relative position as in the original sentence.

Results of Attack We conduct the adversarial attacks on
multiple datasets. The top-3 adversarial triggers for MNLI
and SST-2 are listed in Table 1. We report the attack results
with these triggers in Table 2. For MNLI, after inserting the
words (“with”, and “math”) to the second segment of the
input sentences, the model accuracy of the entailment
class drops from 82.87% to 0.8%. For SST-2, adding the

1www.cs.uic.edu/⇠liub/FBS/sentiment-analysis.html

Image reproduced under fair use from
https://arxiv.org/pdf/2108.13654.pdf

https://arxiv.org/pdf/2108.13654.pdf

Conclusions
• Self-attention attribution
• interprets the information interactions inside Transformer
• makes the self-attention mechanism more explainable.

• Experiments:
• Justify the effectiveness.
• Identify the important attention heads

• a new head pruning approach.
• derive interaction trees

• visualizes information flow of Transformer.
• Designed adversarial triggers for non-targeted attacks.

• Future work?

18

