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Overview

* Desirable output of a classifier is a calibrated posterior probability
* Facilitates post-processing.

e Standard SVMs do not provide such probabilities.

* Create probabilities by training a kernel classifier with

* |ogit link function and
* aregularized maximum likelihood score.

* Training with a maximum likelihood score produces non-sparse kernels.

* Instead,
* train an SVM,

* train the parameters of asigmoid function that
* maps the SVM outputs into probabilities.

* The SVM + sigmoid comparable to the regularized maximum likelihood kernel




Introduction

e Construct a classifier to produce a posterior probability P(class | input)

* Allows decisions that use a utility model
* Important when a classifier is making a small part of an overall decision

* Combine different classifier outputs
* Viterbi search or HMM: results from phoneme recognizers into word recognition.

* Multi-label classifier:
* label with maximal posterior probability is Bayes optimal for equal loss case

* SVMs produce an uncalibrated value that is not a probability
* The unthresholded output of an SVM: f(x) = h(x) + b, where

= Zyz’aik(xiax
* Training minimizes

OZ yzfz —I—‘|'_||h||}"a
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Related Work - |

* Logistic link function by Wahba
» 1
1+ exp(—f(x))’

* Minimize a negative log multinomial likelihood
* plus a term that penalizes the norm

P(class|input) = P(y = 1|x) = p(x)

1 yi"l'l 1_%’ 2
e (Y ogtp + 5 dog(L - ) ) + NI

Wahba G. Support vector machines, reproducing kernel
Hilbert spaces and the randomized GACV. Advances in
Kernel Methods-Support Vector Learning. 1999 Feb




Related Work - |l

* Logistic Link by Wahba

1
P(class|input) = P(y = 1|x) = p(x)

" 1+ exp(—f(x))’

* Output p(x) of such a machine is a posterior probability.
* Minimizing this error function will not directly produce a sparse SVM

1 y; + 1 1 -y s
- (Y togtp + 5 log(1 - p) ) + Al

2 2

* But a modification can produce sparse kernel machines

Wahba G, Lin X, Gao F, Xiang D, Klein R, Klein B. The
bias-variance tradeoff and the randomized GACV.



Related Work - |l

* Map SVM output to probabilities by decomposing feature space F

* a direction orthogonal to the separating hyperplane,
 and all of the N — 1 other dimensions of the feature space.

* The orthogonal direction is parameterized by ¢t VT . e fEle o Seshs]
* A scaled version of f(x) learning theory. Springer science &

. . . business media; 1999 Nov 19.
* All other directions parameterized by a vector u.

* In general, the posterior depends on both t and u: P(y = 1| t, u).
* Vapnik fits this probability with a sum of cosine terms with strong results

Py = 1]t,u) = ) + Zan ) cos(nt).

* Requires a solution of a linear system for every evaluation of the SVM.



Related Work - IV

 Fit Gaussians to the class-conditional densities of the SVM outputs

* p(fly = 1)and
*r(fly = -1

* A single tied variance is estimated for both Gaussians.
* The posterior probability rule P(y = 1|f) is thus a sigmoid

* slope determined by the variance.

e Adjust the bias of the sigmoid
* such that the point P(y = 1|f) = 0.5occursat f = 0.

* The single parameter may not model the true posterior probability.




Related Work -V

* Employ a more flexible version of the Gaussian fittop(f |y = +1)
* Mean and variance for each Gaussian is determined from a data set

e Bayes' rule

pl fly = 1) Py = 1]
Y P fly =Py =1)
 P(y = i): prior probabilities computed from the training set

* This model for SVM output probabilities independently proposed
» Used for speaker identification by C. J. C. Burges at 1998 NIPS SVM workshop

* The posterior is an analytic function of f with form:

Piy = 1|f) = ‘

Plp=1f)=




Related Work - VI

* Two issues with this approach:

* the assumption of Gaussian class-
conditional densities is often
violated

* the posterior estimate derived
from the two-Gaussian
approximation is non-monotonic

Image reproduced under fair use from
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The Platt Scaling Approach
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* Use a parametric model to fit the ool
posterior P(y = 1| f) directly

* instead of estimating the class-
conditional densities p(f|y)
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* The parameters can be adapted to
give the best probability outputs
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* The form of the parametric model
inspired by empirical data

* Far away from Gaussian 0005
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Approach - [l

 The class-conditional densities
apparently exponential.

* Bayes' rule on two exponentials
suggests using a parametric form
of a sigmoid:

|
l +explAf + B)

Flg=1[))=

* Equivalent to assuming that SVM
output proportional to log odds
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Approach - [l

|

iy =1 f) = |
Pl=10 = oA + B

* Parameters A and B fitted using maximum likelihood estimation
* Training set (f;, v;)
* Step 1: Define a new training set (f;, t;) where t; are target probabilities:

oy t+1

b

2

* Minimize the negative log likelihood or cross-entropy of the training data:




Approach - |V

* Two practical challenges
* How to obtain training data t;?
* How to avoid overfitting?

e Using all of the training data is not a good idea
* At the margins, f(x;) =1
* Not likely to be true of any test data
* So, test data will certainly become OOD.

* Solutions:
 Estimate f (x;) by performing leave-one-out estimation




Approach -V

e Using all of the training data is not a good idea
* test data will certainly become OOD.

* Solutions:
 Estimate f (x;) by performing leave-one-out estimation

* Hold-out set
* Do not use 30% of data to train the SVM
* Use this data to train the sigmoid
* Needs more data
* Cross-validation
e Split data into three parts
* Train on permutation of 2 and fit the sigmoid on the third
* Can xten n-fold cross validation




Results - |

Experiment 1
* Assuming equal loss for Type I/Il errors,

* Optimal threshold for SVM+sigmoid is
* P(y=1]f)=05
e Optimal threshold for SVM is
c f=0
* Achieved. f =-0.17 in experiments.
Experiment 2

 Compare SVM+sigmoid to an explicit approach
e that maximizes log multinomial likelihood



Results - |
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* Adding a Sigmoid often helps the SVM!

* Neither approach (Sigmoid or regularized likelihood) is better.
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Conclusions

* Method for extracting probabilities P(class | input) from SVM outputs

* Does not alter the training of the SVM
* No regularization term

* Trainable post-processing step with a binomial maximum likelihood

* Two-parameter sigmoid used for post-processing
* As it is observed empirically

* SVM + sigmoid comparable in accuracy to SVMs
* Or better

e SVM + sigmoid preserves sparseness of kernels
* SVM + sigmoid produces probabilities comparable to regularization.
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