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Overview

 Calibration: Predict probability representative of correctness likelihood

* Modern neural networks are poorly calibrated
* unlike those from a decade ago

* Calibration influenced by
* depth, width
* weight decay, and
e Batch Normalization

* Evaluate post-processing calibration on state-of- the-art architectures

 Temperature scaling is surprisingly effective at calibration
* single- parameter variant of Platt Scaling



Motivation - |

* neural networks produced well-
calibrated probabilities on
binary classification tasks

* Niculescu-Mizil & Caruana (2005)

* Comparison
e 5-layer LeNet (LeCun et al., 1998)
e 110-layer ResNet (He et al., 2016)
* CIFAR-100
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Motivation - |l

* neural networks produced well-
calibrated probabilities on
binary classification tasks E‘ L6

* Niculescu-Mizil & Caruana (2005) 3

* Comparison
e 5-layer LeNet (LeCun et al., 1998)

Cnnhdence
* CIFAR-100
Image reproduced under fair use from
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Calibration Definition

* Let h be a neural network with h(X) = (17, 13)

e Y is a class prediction
e P is its associated confidence, i.e. probability of correctness.

e Expect confidence estimate P to be calibrated

p(Y:Y\ﬁ:p):p, Vp € [0, 1]

* For example,
e given 100 predictions,
e each with confidence of 0.8,
» expect that 80 should be correctly classified.



Reliability Diagram

* Visual representation of model calibration

* Plot accuracy vs. confidence

* Deviation from diagonal represents miscalibration

* Let B,, be the set of indices of samples

* whose confidence falls into mterval | = (—, —)

* The accuracy of B, is acc(B B Z 1(9; = i)

00 02 04 06 OB 14

Image reproduced under fair use from
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Expected Calibration Error (ECE)

* Visual vs. Numeric
* while reliability diagrams are useful visual tools,
* it is more convenient to have a scalar summary statistic of calibration.

e Statistics comparing two distributions cannot be comprehensive(?)
* ECE: difference in expectation between confidence and accuracy

sllp(Y=v1P=p) -1

L .. o o
S ECEApPProXimation:s ECE = » -~ lace[ By, ) — conf{B,,)




Maximum Calibration Error (MCE)

* high-risk applications
* reliable confidence measures are absolutely necessary

* Minimize the worst-case deviation between confidence and accuracy

max (P|{Y =¥ | P=p) |

n 5 1
i1 1 5 4

e Approximation involves binning (similar to ECE)

MCE INLAX acc| B ) — conf{ By, )

LS
ned 1, ., A



Negative Log Likelihood (NLL)

* Negative log likelihood
* a standard measure of a probabilistic model’s quality
* Friedman et al., 2001

* Also known as cross entropy loss
* Bengio et al., 2015

* Given a probabilistic model :it" % and n samples, NLL is defined as

* In expectation, NLL is minimized if and only if .1 % recovers the
(¥ X




Observing Miscalibration - |

* Model capacity

* model capacity increased at a fast pace . SR
over the past decade. | Reael- GIFAR100  ResNebdd - CIFAR-100

* 100-1000 layers o -

* (He et al., 2016; Huang et al., 2016) E 0.4 \____________
» 100s of convolutional filters per layer B i

e (Zagoruyko & Komodakis, 2016) 0. Il_’fr g |

(L0
* increasing depth and width may reduce 02040, 60. 50- 100020 " w200 150 200 150,550
Depth Filters per layer

classification error

* Such increases negatively affect model Image reproduced under fair use from
ca|ibration https://arxiv.org/abs/1706.04599
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Observing Miscalibration - Il

Using Mermalization
ConvMNet - CIFAR-100
 Batch Normalization : 1
+ (Ioffe & Szegedy, 2015) BN Error
* minimizes distribution shifts in activations = Ece

* improves training time
* reduces the need for more regularization
* May improve accuracy

* Enable the development of very deep
architectures

* Creates more miscalibrated models
Without With

Batch Mormalizetion
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Observing Miscalibration - [l

mg Weight Decay
ﬁ:ﬁ:ﬂ 110 - CIFAR-100
* Weight decay

= Error
* used to be a predominant regularization —_— BE
mechanism for neural networks :

* Learning Theory Vapnik, 1998 .
* regularization prevents overfitting
 |offe & Szegedy, 2015

* models with less L2 regularization generalizes
better

e Now common to train models with little
weight decay, if any at all.

', 1 any. o TV T I T 1 .
* more regularlzgtlon improves calibration Waight decay
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Observing Miscalibration - |V

* NLL indirectly measures model s5 NLL Overfitting on CIFAR-100

calibration.

—Test error
—Test NLL

A
O

* In practice, we observe a disconnect
between NLL and accuracy

(9Y)
N
T

 Neural networks can overfit to NLL
without overfitting to the 0/1 loss.

* Both error and NLL drop at epoch 250
* when the learning rate is dropped

Error (%) / NLL (scaled)
(U]
()

[\
()|
T
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Calibration Methods — |

Histogram binning is a simple non-parametric calibration method
all uncalibrated predictions ﬁz are divided into mutually exclusive bins B, ,...,BM .
Each bin is assigned a calibrated score 6_; if ]3@ is assigned to bin B, then qdi = Om.
For a fixed M, we define bin boundaries

0=a; <ay <... <apys+ = 1,

The predictions 6, are chosen to minimize the bin-wise squared loss:

M n
min 3" Y 1ap < B < anst) (6~ 9:)°
LM 1 =1

* The solution results in 8_ that correspond to the average number of positive-class




Calibration Methods — ||

* |[sotonic regression
* learns a piecewise constant function f to transform uncalibrated outputs §;
* Generalizes histogram binning
* bin boundaries and bin predictions are jointly optimized.

» Produces f to minimize the square loss > ., (f(p:) — v:)*.
* Optimization problem

M n
m]\i4n Z Z L(am < Pi < ams1) (Om — y¢)2
91,...,91\4 m=1 1=1

al,...,aM+1

subjectto 0 =a; < a9 <...<apys1 =1,
01 <60y <...<0yp.

* M is the number of intervals
® a,...,3ay, are theinterval boundaries




Calibration Methods — Il

e Bayesian Binning into Quantiles (BBQ)

* Naeini et al., 2015

* an extension of histogram binning using Bayes model averaging
 BBQ marginalizes out all possible binning schemes

* The parameters of a binning scheme are9,, ..., 0,

e Under this framework,
* histogram binning and isotonic regression both produce a single binning scheme,

 where BBQ considers a space S of all possible binning schemes for the validation data
setD

* BBQ performs Bayesian averaging of the probabilities produced by each




Calibration Methods — IV

* Platt scaling (Platt et al., 1999) is a parametric approach to calibration

* The non-probabilistic classifier predictions are used for logistic
regression
 trained on the validation set to return probabilities

* Platt scaling learns scalar parameters a,b € R and

e outputs q; = U(G,Zi + b) as the calibrated probability.

* Parameters a and b optimized using NLL loss over validation set
* Neural network’s parameters are fixed during this stage



Calibration =V

* Extension to Multiclass Models
* network outputs a class prediction ¥; and confidence score D; for each input X;.

. . S K
* In this case, the network logits Z; are vectors, where y; = argmax; Z,L( ),

 Diis typically derived using the softmax function

()
exXp( 2; .
USM(Zi)(k) - K bl ff)r»(--) y Pi = HMaX USM(Zi)(k)
Zj:l exp(zij ) ;

* Goal: produce a calibrated confidence and class prediction based on the above.




Calibration - VI

* Extension of binning methods.

e Extend binary calibration methods to the multiclass setting
* by treating the problem as K one-versus-all problems

* Matrix and vector scaling: multi-class extensions of Platt scaling.

* Let Z; be the logits vector for input X..

* Matrix scaling applies a linear transformation WZ; + b to the logits
gi = 1o osm(Wz; +b) k),
! = argmax (Wz; + b)*),

* The parameters W and b are optimized with respect to NLL on the
validation set.

e ## parameters for matrix grows quadratically with number of classes K



Temperature Scaling

* Commonly used in other settings
* knowledge distillation (Hinton et al., 2015)
* statistical mechanics (Jaynes, 1957)

 Temperature scaling uses a single scalar parameter T > O for all classes
* the simplest extension of Platt scaling

* Given the logit vector Z;, the new confidence prediction is ¢; = max osm(zi/T)™)
e T is called the temperature
* |t “softens” the softmax with T > 1.

* AsT — oo, the probability g; approaches 1/K

* which represents maximum uncertainty.
e T is optimized with respect to NLL on the validation set.
* Because the parameter T does not change the maximum of the softmax function,
* the class prediction remains unchanged.




Results — |

6 data sets for image classification
1. Caltech-UCSD Birds (Welinder et al., 2010): 200 bird species.

2. Stanford Cars (Krause et al., 2013): 196 classes of cars by make,
model, and year.

3. ImageNet 2012 (Deng et al., 2009): Natural scene images from 1000
classes.

4. CIFAR-10/CIFAR-100 (Krizhevsky & Hinton, 2009): Color images (32
x 32) from 10/100 classes.

5. Street View House Numbers (SVHN) (Netzer et al., 2011): 32 x 32
colored images of cropped out house numbers from Google Street



Results — |

4 data sets for document classification
1. 20 News: News articles, partitioned into 20 categories by content.
2. Reuters: News articles, partitioned into 8 categories by topic.

3. Stanford Sentiment Treebank (SST) (Socher et al., 2013): Movie

reviews, represented as sentence parse trees that are annotated by
sentiment.

* Each sample includes a coarse binary label and a fine grained 5-class label.



Results — |l

Dataset Model Uncalibrated Hist. Binning Isotonic  BBQ  Temp. Scaling Vector Scaling Matrix Scaling
CIFAR-100 ResNet 110 16.53% 2.66% 4.99%  5.46% 1.26 % 1.32% 25.49%
CIFAR-100 ResNet 110 (SD) 12.67% 2.46% 4.16%  3.58% 0.96% 0.9 % 20.09%
CIFAR-100 Wide ResNet 32 15.0% 3.01% 5.85%  5.77% 2.32% 2.57% 24.44%
CIFAR-100 DenseNet 40 10.37% 2.68% 451%  3.59% 1.18% 1.09% 21.87%

CIFAR-100 LeNet 5 4.85% 6.48% 235%  3.77% 2.02% 2.09% 13.24%




Results — IV

Dataset Model Uncalibrated Hist. Binning Isotonic  BBQ  Temp. Scaling Vector Scaling Matrix Scaling
CIFAR-10 ResNet 110 4.6% 0.58% 0.81%  0.54% 0.83% 0.88% 1.0%
CIFAR-10 ResNet 110 (SD) 4.12% 0.67% 1.11% 0.9% 0.6 % 0.64% 0.72%
CIFAR-10 Wide ResNet 32 4.52% 0.72% 1.08%  0.74% 0.54 % 0.6% 0.72%
CIFAR-10 DenseNet 40 3.28% 0.44% 0.61% 0.81% 0.33% 0.41% 0.41%

CIFAR-10 LeNet 5 3.02% 1.56% 1.85%  1.59% 0.93 % 1.15% 1.16%




Results —V

ImageNet/SVHN
Dataset Model Uncalibrated Hist. Binning Isotonic  BBQ  Temp. Scaling Vector Scaling Matrix Scaling
ImageNet DenseNet 161 6.28% 4.52% 5.18%  3.51% 1.99% 2.24% -
ImageNet ResNet 152 5.48% 4.36% 4.77%  3.56% 1.86 % 2.23% -
SVHN ResNet 152 (SD) 0.44% 0.14% 0.28%  0.22% 0.17% 0.27% 0.17%




Results — VI

Dataset Model Uncalibrated Hist. Binning Isotonic  BBQ  Temp. Scaling Vector Scaling Matrix Scaling
20 News DAN 3 8.02% 3.6 % 5.52%  4.98% 4.11% 4.61% 9.1%
Reuters DAN 3 0.85% 1.75% 1.15%  0.97% 0.91% 0.66 % 1.58%
SST Binary TreeLSTM 6.63% 1.93% 1.65% 2.27% 1.84% 1.84% 1.84%

SST Fine Grained TreeLSTM 6.71% 2.09% 1.65% 2.61% 2.56% 2.98% 2.39%




Results — VII

ResNet on CIFAR-100

Uncal. - CIFAR-100 CIFAR-100 Hist. Bin. - CIFAR-100 Iso. - CIFAR-104
L0 Heabiet-110 (S EﬂHEl:-llﬂ IED]- ResMeat-110 {(SD) He u-t-ll[:l{ED]
] ﬂul;-m — R 'III'lntp'n.t-: B Cutpuis i1 ﬂ-l;-m
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Theoretical Result

Claim 1. Given n samples’ logit vectors z,...,%z, and
class labels vy, ... ,Yyn, temperature scaling is the unique
solution q to the following entropy maximization problem:

max ZZQ ) &) log g(z;) )

i=1 k=1
subjectto  q(z;)"*) >0 Vi, k

K
> qz)® =1 Vi
k=1




Proof

Z Zq )" log q(z;) ™)

1=1 k=1

K _

_I_ZBZZ Zz <k)_1)

=1 k=1

Lagrangian



n K
L=->% > q(z)"logq(z)"
1=1 k=1
e ) k) e g (®) 4 3o (®)
T >‘>J >4Z7; q(z:) ™ — ;¥ 3Q(Z¢)(k)L = —nK —logq(z:)"™ + A5 + fi.
1=1 Lk=1 -
K
DI SUCEED
k=1
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Proof

Z Zq )" log q(z;) ™)

1=1 k=1

n [ K = a
; ) — —nK — () (k) 4 3.
4 )\> > Z q I (y ) 8q(zi)(k)L = —nK —logq(z;)"" + Az, + ;.
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n K
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Proof

Z Zq )" log q(z;) ™)

=1 k=1
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' Lk 1 i

+Z&Z (z;)®) — 1). Setting
1=1

k A
=t derivative to O, Q(Zi)( ) =¢

Lagrangian Since

orobabilities  q(z;)"*) =

0

Sz L = i~ log a(z)® + 22" + ;.

AV

2y +Bi—nK
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Conclusions

* Probabilistic error and miscalibration worsen for modern neural nets
* Even when classification error is reduced.

* Recent advances worsen network calibration

* model capacity,
* normalization,
e regularization

e Future work:
Understand why these trends affect calibration while improving accuracy

 Temperature scaling is effective in calibrating models
* simplest,
 fastest, and
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