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Motivation

There are things we know that we

know. There are known unknowns.

That is to say there are things that

we now know we don't know. But I E o)

there are also unknown unknowns. e
. L ™

2 misclassified as 9 3 misclassified as 2 8 misclassified as 2
AttributeConf=0.28 AttributeConf=0.41 AttributeConf=0.89

Al does not know that it does now know!



Explainable Al and Attributions
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Explanation showing outline of a car

* The values of the features in the explanation
are called attributions

 Attribution-based confidence (ABC) metric

Explanation showing outline of a Gila Monster




Attribution-based confidence (ABC) metric
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attributions for
given input

Generated samples from
attribution-neighborhood
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/171 DNN model
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1 the samples
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model conformance

Attribution-based confidence (ABC) metric




Observations
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Only top 1 percent of features have significant attributions

Number of high attributions features is low, making



How to generate such attribution-based samples?

e Fis the DNN function, A is the attribution, x is the input, x° is the
baseline.

* Assumption 1: Attribution is dominated by the first order
derivative. Most explanation generation methods assume this.

1
.A;-(X) = 57 — X?) X / 0, F' (x" 4+ a(x — x"))da
a=0

e Assumption 2: Attributions are complete.




* Theorem: The sensitivity of the output with respect to an input
feature can be approximated as the ratio of the attribution and the
input feature 4i&X) |

255

* Proof: Given an input X and its neighbor x' =x+Jx, we can use
Taylor series expansion to express F(x') as:

Fx) = Fx) +[>37 (5%, |4+ maxg—y., O(0%2) .

8Xk

» Using completeness assumption on F(x): F(x') — F(x*) = > 1 Ap(x') .
* Eliminating x”term and doing Taylor expansion we get:
F(x) = F(x) =) (Ap(x) — Ax(x))

k=1

— ((0AL(x) 2 |




e Sensitivity of the model with respect to the input feature x; is 22>

8Xj

.A;-(X) = (X; — X?) X /:0 0, F'(x* + a(x — x"))da

* Differentiating attributions and then removing non-linear term:

j:

0A;(x) :/1 8]—“(Xb—|—oz(x—xb))da+x'i (/1 6]:(Xb—|—oz(x—xb))do
an =0 8Xj ! 8Xj a=0 an
1 b b 1 92 (b _ b
:/ OF (x° + a(x X))doz—l—xj (/ 0°F(x —I—O;(X X))doz>
a=0 8Xj a=0 8Xj
1 b b .
~ / AP AP ER: ))da = A () with baseline feature x% = 0.

=0 0% Xj



How to generate such attribution-based
samples?

* Theorem: The sensitivity of the output with respect to an input
feature can be approximated to the ratio of the attribution and the
input feature Aff—(j") :

* Probability of mutating input feature:

N | Aj /x5
P(xj) = s 52 7]

* Generate samples by mutating feature x; of input x to baseline X?
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ABC algorithm
(Attribution-Based Confidence)

/’, Orlgmal
/’/ DNN model
7 evaluated on
Input: Model F, Input x with features XL,aiz, .. . Xp, Sample size S 1 the samples
Output: ABC metric ¢(F, x) d ABC metric computed as
1: A;,... A, + Attributions of features X;, Xa, . . . X,, from input x model conformance
2: i < F(x) {Obtain model prediction}
3: for j =1tondo
A /x;
& Plxy) « s
5: end for
6: Generate S samples by mutating feature x; of input x to baseline x?- with probability P(x;)
7: Obtain the output of the model on the S samples.
8: c(F,x%x) < Sconform /S where model’s output on Sconform samples is i
9: return c(F,x) as confidence metric (ABC) of prediction by the model F on the input x




ABC algorithm
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DNN model

o " evaluated on

Input: Model F, Input x with features X1, X2, . . . X,,, Sample size S ¢ the samples
Output: ABC metric c(F, x) “"‘ ABC metric computed as

1: Ay,... A, < Attributions of features x1, Xo, - Xy, from input x model conformance

2: i < F(x) {Obtain model prediction} l‘g"

3: for j=T1tondo

Aj /%

& Plxy) « s

5: end for

6: Generate S samples by mutating feature x; of input x to baseline x with probability P(x;)

7: Obtain the output of the model on the S samples.

8: c(F,x%x) < Sconform /S where model’s output on Sconform samples is i

9: return c(F,x) as confidence metric (ABC) of prediction by the model F on the input x




Features with

ABC a|g0r|thm c:gggu:gd ;
(Attribution-Based Confidence) given input

Generated samples from
attribution-neighborhood

~ Origina
DNN model
evaluated on
Input: Model F, Input x with features x1, Xo, . ..X,, Sample size § - - - - — - 4 — — the samples
Output: ABC metric ¢(F, x) ABC metric computed as | |
A1, ... A, < Attributions of features x;, Xs, . . . X,, from input x model conformance :
i < F(x) {Obtain model prediction} = ———=—=-—= -—-——-t—=
for ) =1tondo

AW | A /x5
P(x;) < s 2

end for
Generate .S samples by mutating feature x; of input x to baseline x? ; with probablhty P(x;)
Obtain the output of the model on the S samples. -

Y

c(F,X) < Sconform /S where model’s output on Scopform samples is ¢
return c(F,x) as confidence metric (ABC) of prediction by the model F on the input x

A PSRN~ AT




computed |

ABC algorithm ! ompicd
(Attribution-Based Confidence) s menipie

Generated samples from
attribution-neighborhood

.IIIIII

Obtain the output of the model on the S samples.

c(F,X) < Sconform /S where model’s output on Scopform samples is ¢
return c(F,x) as confidence metric (ABC) of prediction by the model F on the input x

/',,, “:7.

Input: Model F, Input x with features XL,aiz, o Xy, San‘]pl’é‘size S | ]
Output: ABC metric ¢(F, x) e :."‘ I | ABC metric computed ag | !

1: Al, ... A, < Attributions of features x;, xz_,_;_‘..rﬁcn from input x | ! model conformance :

2: i < F(x) {Obtain model prediction}  p* - F--—-t==

3: for yj=Ttondo !

: N [A; /%] !

4:  P(x;) < ST A fxr |

5: end for Il

6: Generate S samples by mutating feature x; of input x to baseline x with probabiljty P(x;)

7

8:

9:




Finding conformance and deciding when to
stop sampling

e SPRT to determine optimal stopping criteria (Wald, 1945)

C N C C C C C N C N
C=7,N=3

* Checking just first four samples gives us an idea about the final
outcome
C N C C C C C N C N
C=3,N=1

e |If we don’t want to generate and test all 10 samples and if we




Sequential Probability Ratio Test (SPRT)

e Type I/Il errors ¢
* Indifference region [po, p1]

* Stopping criteria: Smin =10g(:%) , Smaz = log(1=*)
* Number of conforming samples seen till now is C
* Number of non-conforming samples seen till now is 1
* Sequential probability ratio at each iteration is:
c(1—pg)"
S = log(gégl—gogn)
* |f sequential probability ratio crosses stopping criteria, then stop sampling




If you can't measure it, you can’t manage it!

Results




Defense
against patch
attacks

e (top) Original images do
not change label.

* (middle) Removing — T
banana patch generated e
using adversarial patch e
attack.

* (bottom) Removing
baseball patch
generated using LaVAN
method.
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ABC metric for out-of- fshionMnisT
distribution data

* DNN trained on MNIST makes high confidence predictions
for FashionMNIST and notMNIST input.

e Just the DNN prediction does not convey the whole
picture.

pA



ABC metric for out-of-distribution data
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* ABC of in-distribution images is higher than




ABC metric
for FGSM,
PGD,

DeepFool
and CW
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Future Research

e Different modalities
e Different adversarial attacks
* Sensitivity to attribution errors

e Deeper theoretical connections
* with Bayesian approaches



	Slide 1: Attribution-Based Confidence Metric For Deep Neural Networks 
	Slide 2: Motivation
	Slide 3: Explainable AI and Attributions 
	Slide 4: Attribution-based confidence (ABC) metric 
	Slide 5: Attribution-based confidence (ABC) metric 
	Slide 6: Observations
	Slide 7: How to generate such attribution-based samples?
	Slide 8
	Slide 9
	Slide 10: How to generate such attribution-based samples?
	Slide 11: ABC algorithm (Attribution-Based Confidence)
	Slide 12: ABC algorithm (Attribution-Based Confidence)
	Slide 13: ABC algorithm (Attribution-Based Confidence)
	Slide 14: ABC algorithm (Attribution-Based Confidence)
	Slide 15: Finding conformance and deciding when to stop sampling
	Slide 16: Sequential Probability Ratio Test (SPRT) 
	Slide 17: Results
	Slide 18: Defense against patch attacks  
	Slide 19
	Slide 20: ABC metric for out-of-distribution data
	Slide 21: ABC metric for out-of-distribution data
	Slide 22: ABC metric for FGSM, PGD, DeepFool and CW
	Slide 23: Future Research

