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Abstract

We show how the Hindley/Milner polymorphic type system can be
extended to incorporate overloading and subtyping. Our approach is to
attach constraints to quantified types in order to restrict the allowed in-
stantiations of type variables. We present an algorithm for inferring prin-
cipal types and prove its soundness and completeness. We find that it
is necessary in practice to simplify the inferred types, and we describe
techniques for type simplification that involve shape unification, strongly
connected components, transitive reduction, and the monotonicities of
type formulas.

1 Introduction

Many algorithms have the property that they work correctly on many different
types of input; such algorithms are called polymorphic. A polymorphic type
system supports polymorphism by allowing some programs to have multiple
types, thereby allowing them to be used with greater generality.

The popular polymorphic type system due to Hindley and Milner [7, 10, 3]
uses universally quantified type formulas to describe the types of polymorphic
programs. Each program has a best type, called the principal type, that cap-
tures all possible types for the program. For example, the program λf.λx.f(f x)
has principal type ∀α.(α → α) → (α → α); any other type for this program
can be obtained by instantiating the universally quantified type variable α ap-
propriately. Another pleasant feature of the Hindley/Milner type system is the
possibility of performing type inference—principal types can be inferred auto-
matically, without the aid of type declarations.

However, there are two useful kinds of polymorphism that cannot be han-
dled by the Hindley/Milner type system: overloading and subtyping. In the
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Hindley/Milner type system, an assumption set may contain at most one typ-
ing assumption for any identifier; this makes it impossible to express the types
of an overloaded operation like multiplication. For ∗ has types int → int → int1

and real → real → real (and perhaps others), but it does not have type
∀α.α → α → α. So any single typing ∗ : σ is either too narrow or too broad.
As for subtyping, the Hindley/Milner system does not provide for subtype in-
clusions such as int ⊆ real .

This paper extends the Hindley/Milner system to incorporate overloading
and subtyping, while preserving the existence of principal types and the ability
to do type inference. In order to preserve principal types, we need a richer set of
type formulas. The key device needed is constrained (universal) quantification,
in which quantified variables are allowed only those instantiations that satisfy
a set of constraints.

To deal with overloading, we require typing constraints of the form x : τ ,
where x is an overloaded identifier. To see the need for such constraints, consider
a function expon(x, n) that calculates xn, and that is written in terms of ∗ and
1, which are overloaded. Then the types of expon should be all types of the
form α → int → α, provided that ∗ : α → α → α and 1 : α; these types are
described by the formula ∀α with ∗ : α→ α→ α, 1 : α . α→ int → α.

To deal with subtyping, we require inclusion constraints of the form τ ⊆ τ ′.
Consider, for example, the function λf.λx.f(f x). In the Hindley/Milner sys-
tem, this function has principal type ∀α.(α → α) → (α → α). But in the
presence of subtyping, this type is no longer principal—if int ⊆ real , then
λf.λx.f(f x) has type (real → int) → (real → int), but this type is not de-
ducible from ∀α.(α → α) → (α → α). The principal type turns out to be
∀α, β with β ⊆ α . (α→ β) → (α→ β).

A subtle issue that arises with the use of constrained quantification is the
satisfiability of constraint sets. A type with an unsatisfiable constraint set is
vacuous ; it has no instances. We must take care, therefore, not to call a program
well typed unless we can give it a type with a satisfiable constraint set.

1.1 Related Work

Overloading (without subtyping) has also been investigated by Kaes [8] and
by Wadler and Blott [19]. Kaes’ work restricts overloading quite severely;
for example he does not permit constants to be overloaded. Both Kaes’ and
Wadler/Blott’s systems ignore the question of whether a constraint set is satis-
fiable, with the consequence that certain nonsensical expressions are regarded as
well typed. For example, in Wadler/Blott’s system the expression true + true is
well typed, even though + does not work on booleans. Kaes’ system has similar
difficulties.

Subtyping (without overloading) has been investigated by (among many oth-
ers) Mitchell [11], Stansifer [15], Fuh and Mishra [4, 5], and Curtis [2]. Mitchell,
Stansifer, and Fuh and Mishra consider type inference with subtyping, but their

1Throughout this paper, we write functions in curried form.
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languages do not include a let expression; we will see that the presence of let

makes it much harder to prove the completeness of our type inference algorithm.
Curtis studies a very rich type system that is not restricted to shallow types.
The richness of his system makes it hard to characterize much of his work; for
example he does not address the completeness of his inference algorithm. Fuh
and Mishra and Curtis also explore type simplification.

1.2 Outline of the Rest of the Paper

In Section 2, we give the rules of the type system. In Section 3, we present
algorithm Wos for inferring principal types. Section 4 contains the proofs that
Wos is sound and complete. Section 5 describes techniques for simplifying the
types produced by Wos. Section 6 briefly discusses the problem of testing the
satisfiability of a constraint set. Finally, Section 7 concludes with a number of
examples of type inference.

2 The Type System

The language that we study is the simple core-ML of Damas and Milner [3].
Given a set of identifiers (x, y, a, ≤, 1, . . . ), the set of expressions is given by

e ::= x | λx.e | e e′ | let x = e in e′.

Given a set of type variables (α, β, γ, . . .) and a set of type constructors (int ,
bool , char , set , seq, . . . ) of various arities, we define the set of (unquantified)
types by

τ ::= α | τ → τ ′ | χ(τ1, . . . , τn)

where χ is an n-ary type constructor. If χ is 0-ary, then the parentheses are
omitted. As usual, → associates to the right. Types will be denoted by τ , π, ρ,
φ, or ψ. We say that a type is atomic if it is a type constant (that is, a 0-ary
type constructor) or a type variable.

Next we define the set of quantified types, or type schemes, by

σ ::= ∀α1, . . . , αn with C1, . . . , Cm . τ ,

where each Ci is a constraint, which is either a typing x : π or an inclusion
π ⊆ π′. We use overbars to abbreviate sequences; for example α1, α2, . . . , αn is
abbreviated as ᾱ.

A substitution is a set of simultaneous replacements for type variables:

[α1, . . . , αn := τ1, . . . , τn]

where the αi’s are distinct. We write the application of substitution S to type
σ as σS, and we write the composition of substitutions S and T as ST . A
substitution S can be applied to a typing x : σ or an inclusion τ ⊆ τ ′, yielding
x : (σS) and (τS) ⊆ (τ ′S), respectively.
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When a substitution is applied to a quantified type, the usual difficulties
with bound variables and capture must be handled. We define

(∀ᾱ with C . τ)S = ∀β̄ with C[ᾱ := β̄]S . τ [ᾱ := β̄]S,

where β̄ are fresh type variables occurring neither in ∀ᾱ with C . τ nor in S.
We occasionally need updated substitutions. The substitution S ⊕ [ᾱ := τ̄ ]

is the same as S, except that each αi is mapped to τi.
We are now ready to give the rules of our type system. There are two kinds

of assertions that we are interested in proving: typings e : σ and inclusions
τ ⊆ τ ′. These assertions will in general depend on a set of assumptions A, which
contains the typings of built-in identifiers (e.g. 1 : int) and basic inclusions (e.g.
int ⊆ real). So the basic judgements of our type system are A ⊢ e : σ (“from
assumptions A it follows that expression e has type σ”) and A ⊢ τ ⊆ τ ′ (“from
assumptions A it follows that type τ is a subtype of type τ ′”).

More precisely, an assumption set A is a finite set of assumptions, each of
which is either an identifier typing x : σ or an inclusion τ ⊆ τ ′. An assumption
set A may contain more than one typing for an identifier x; in this case we say
that x is overloaded in A. If there is an assumption about x in A, or if some
assumption in A has a constraint x : τ , then we say that x occurs in A.

The rules for proving typings are given in Figure 1 and the rules for proving
inclusions are given in Figure 2. If C is a set of typings or inclusions, then the
notation A ⊢ C represents

A ⊢ C, for all C in C.

(This notation is used in rules (∀-intro) and (∀-elim).) If A ⊢ e : σ for some σ,
then we say that e is well typed with respect to A.

Our typing rules (hypoth), (→-intro), (→-elim), and (let) are the same as in
Damas and Milner [3], except for the restrictions on (→-intro) and (let), which
are necessary to avoid certain anomalies. Because of the restrictions, we need
a rule, (≡α), to allow the renaming of bound program identifiers; this allows
the usual block structure in programs. Also (≡α) allows the renaming of bound
type variables.

It should be noted that rule (let) cannot be used to create an overloading for
an identifier; as a result, the only overloadings in the language are those given
by the initial assumption set.2

Rules (∀-intro) and (∀-elim) are unusual, since they must deal with constraint
sets. These rules are equivalent to rules in [19], with one important exception:
the second hypothesis of the (∀-intro) rule allows a constraint set to be moved
into a type scheme only if the constraint set is satisfiable. This restriction, which
is not present in the system of [19], is crucial in preventing many nonsensical
expressions from being well typed. For example, from the assumptions + :

2This is not to say that our system disallows user-defined overloadings; it would be simple
to provide a mechanism allowing users to add overloadings to the initial assumption set. The
only restriction is that such overloadings must have global scope; as observed in [19], local

overloadings complicate the existence of principal typings.
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(hypoth) A ⊢ x : σ, if x : σ ∈ A

(→-intro) A ∪ {x : τ} ⊢ e : τ ′

A ⊢ λx.e : τ → τ ′
(x does not occur in A)

(→-elim) A ⊢ e : τ → τ ′

A ⊢ e′ : τ
A ⊢ e e′ : τ ′

(let) A ⊢ e : σ
A ∪ {x : σ} ⊢ e′ : τ
A ⊢ let x = e in e′ : τ

(x does not occur in A)

(∀-intro) A ∪C ⊢ e : τ
A ⊢ C[ᾱ := π̄]
A ⊢ e : ∀ᾱ with C . τ

(ᾱ not free in A)

(∀-elim) A ⊢ e : ∀ᾱ with C . τ

A ⊢ C[ᾱ := π̄]
A ⊢ e : τ [ᾱ := π̄]

(≡α) A ⊢ e : σ
e ≡α e

′

σ ≡α σ
′

A ⊢ e′ : σ′

(⊆) A ⊢ e : τ
A ⊢ τ ⊆ τ ′

A ⊢ e : τ ′

Figure 1: Typing Rules
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(hypoth) A ⊢ τ ⊆ τ ′, if (τ ⊆ τ ′) ∈ A

(reflex) A ⊢ τ ⊆ τ

(trans) A ⊢ τ ⊆ τ ′

A ⊢ τ ′ ⊆ τ ′′

A ⊢ τ ⊆ τ ′′

((−) → (+)) A ⊢ τ ′ ⊆ τ

A ⊢ ρ ⊆ ρ′

A ⊢ (τ → ρ) ⊆ (τ ′ → ρ′)

(seq(+)) A ⊢ τ ⊆ τ ′

A ⊢ seq(τ) ⊆ seq(τ ′)

Figure 2: Subtyping Rules

int → int → int , + : real → real → real , and true : bool , then without the
satisfiability condition it would follow that true + true has type

∀ with + : bool → bool → bool . bool

even though + doesn’t work on bool !
Inclusion rule (hypoth) allows inclusion assumptions to be used, and rules

(reflex) and (trans) assert that ⊆ is reflexive and transitive. The remaining in-
clusion rules express the well-known monotonicities of the various type construc-
tors [13]. For example, → is antimonotonic in its first argument and monotonic
in its second argument. The name ((−) → (+)) compactly represents this infor-
mation. Finally, rule (⊆) links the inclusion sublogic to the typing sublogic—it
says that an expression of type τ has any supertype of τ as well.

As an example, here is a derivation of the typing

{} ⊢ λf.λx.f(f x) : ∀α, β with β ⊆ α . (α→ β) → (α→ β).

We have
{β ⊆ α, f : α→ β, x : α} ⊢ f : α→ β (1)

by (hypoth),
{β ⊆ α, f : α→ β, x : α} ⊢ x : α (2)

by (hypoth),
{β ⊆ α, f : α→ β, x : α} ⊢ (f x) : β (3)

by (→-elim) on (1) and (2),

{β ⊆ α, f : α→ β, x : α} ⊢ β ⊆ α (4)

by (hypoth),
{β ⊆ α, f : α→ β, x : α} ⊢ (f x) : α (5)
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by (⊆) on (3) and (4),

{β ⊆ α, f : α→ β, x : α} ⊢ f(f x) : β (6)

by (→-elim) on (1) and (5),

{β ⊆ α, f : α→ β} ⊢ λx.f(f x) : α→ β (7)

by (→-intro) on (6),

{β ⊆ α} ⊢ λf.λx.f(f x) : (α→ β) → (α→ β) (8)

by (→-intro) on (7),
{} ⊢ (β ⊆ α)[β := α] (9)

by (reflex), and finally

{} ⊢ λf.λx.f(f x) : ∀α, β with β ⊆ α . (α→ β) → (α→ β) (10)

by (∀-intro) on (8) and (9).
Given a typing A ⊢ e : σ, other types for e may be obtained by extending

the derivation with the (∀-elim) and (⊆) rules. The set of types thus derivable
is captured by the instance relation, ≥A.

Definition 1 (∀ᾱ with C . τ) ≥A τ ′ if there is a substitution [ᾱ := π̄] such
that

• A ⊢ C[ᾱ := π̄] and

• A ⊢ τ [ᾱ := π̄] ⊆ τ ′.

Furthermore we say that σ ≥A σ′ if for all τ , σ′ ≥A τ implies σ ≥A τ . In this
case we say that σ′ is an instance of σ with respect to A.

Now we can define the important notion of a principal typing.

Definition 2 The typing A ⊢ e : σ is said to be principal if for all typings
A ⊢ e : σ′, σ ≥A σ′. In this case σ is said to be a principal type for e with
respect to A.

An expression may have many principal types; for example, in Section 5 we
show how a complex principal type can be systematically transformed into a
much simpler (and more useful) principal type.

We now turn to the problem of inferring principal types.

3 Type Inference

For type inference, we make some assumptions about the initial assumption set.
In particular, we disallow inclusion assumptions like int ⊆ (int → int), in which
the two sides of the inclusion do not have the same ‘shape’. Furthermore, we
disallow ‘cyclic’ sets of inclusions such as bool ⊆ int together with int ⊆ bool .
More precisely, we say that assumption set A has acceptable inclusions if

7



Wos(A, e) is defined by cases:

1. e is x

if x is overloaded in A with lcg ∀ᾱ.τ ,
return ([ ], {x : τ [ᾱ := β̄]}, τ [ᾱ := β̄]) where β̄ are new

else if (x : ∀ᾱ with C . τ) ∈ A,
return ([ ], C[ᾱ := β̄], τ [ᾱ := β̄]) where β̄ are new

else fail.

2. e is λx.e′

if x occurs in A, then rename x to a new identifier;
let (S1, B1, τ1) = Wos(A ∪ {x : α}, e′) where α is new;
return (S1, B1, αS1 → τ1).

3. e is e′e′′

let (S1, B1, τ1) = Wos(A, e
′);

let (S2, B2, τ2) = Wos(AS1, e
′′);

let S3 = unify(τ1S2, α→ β) where α and β are new;
return (S1S2S3, B1S2S3 ∪B2S3 ∪ {τ2S3 ⊆ αS3}, βS3).

4. e is let x = e′ in e′′

if x occurs in A, then rename x to a new identifier;
let (S1, B1, τ1) = Wos(A, e

′);
let (S2, B

′

1, σ1) = close(AS1, B1, τ1);
let (S3, B2, τ2) = Wos(AS1S2 ∪ {x : σ1}, e

′′);
return (S1S2S3, B

′

1S3 ∪B2, τ2).

Figure 3: Algorithm Wos

• A contains only constant inclusions (i.e. inclusions of the form c ⊆ d,
where c and d are type constants), and

• the reflexive transitive closure of the inclusions in A is a partial order.

Less significantly, we do not allow assumption sets to contain any typings
x : σ where σ has an unsatisfiable constraint set; we say that an assumption set
has satisfiable constraints if it contains no such typings.

Henceforth, we assume that the initial assumption set has acceptable inclu-
sions and satisfiable constraints.

Principal types for our language can be inferred using algorithm Wos, given
in Figure 3. Wos is a generalization of Milner’s algorithm W [10, 3]. Given
initial assumption set A and expression e, Wos(A, e) returns a triple (S,B, τ),
such that

AS ∪B ⊢ e : τ.
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close(A,B, τ):

let ᾱ be the type variables free in B or τ but not in A;
let C be the set of constraints in B in which some αi occurs;
if A has no free type variables,

then if B is satisfiable with respect to A, then B′ = {} else fail
else B′ = B;

return ([ ], B′, ∀ᾱ with C . τ).

Figure 4: A simple function close

Informally, τ is the type of e, B is a set of constraints describing all the uses made
of overloaded identifiers in e as well as all the subtyping assumptions made, and
S is a substitution that contains refinements to the typing assumptions in A.

Case 1 of Wos makes use of the least common generalization (lcg) [12] of an
overloaded identifier x, as a means of capturing any common structure among
the overloadings of x. For example, the lcg of ∗ is ∀α.α→ α→ α.

Case 3 of Wos is the greatest departure from algorithm W . Informally, we
type an application e′e′′ by first finding types for e′ and e′′, then ensuring that
e′ is indeed a function, and finally ensuring that the type of e′′ is a subtype of
the domain of e′.

Case 4 of Wos uses a function close, a simple version of which is given
in Figure 4. The idea behind close is to take a typing A ∪ B ⊢ e : τ and,
roughly speaking, to apply (∀-intro) to it as much as possible. Because of
the satisfiability condition in our (∀-intro) rule, close needs to check whether
constraint set B is satisfiable with respect to A; we defer discussion of how this
might be implemented until Section 6.

Actually, there is a considerable amount of freedom in defining close; one
can give fancier versions that do more type simplification. We will explore this
possibility in Section 5.

4 Correctness of Wos

In this section, we prove the correctness of Wos. To begin with, we state a num-
ber of lemmas that give useful and fairly obvious properties of the type system.
The proofs, which typically use induction on the length of the derivation, are
mostly straightforward and are omitted.3

First, derivations are preserved under substitution:

Lemma 3 If A ⊢ e : σ then AS ⊢ e : σS. If A ⊢ τ ⊆ τ ′, then AS ⊢ τS ⊆ τ ′S.

Next we give conditions under which an assumption is not needed in a derivation:

Lemma 4 If A∪{x : σ} ⊢ y : τ , x does not occur in A, and x and y are distinct
identifiers, then A ⊢ y : τ . If A ∪ {x : σ} ⊢ τ ⊆ τ ′, then A ⊢ τ ⊆ τ ′.

3Proofs can be found in [14].
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Extra assumptions never cause problems:

Lemma 5 If A ⊢ e : σ then A ∪B ⊢ e : σ. If A ⊢ τ ⊆ τ ′ then A ∪B ⊢ τ ⊆ τ ′.

More substantially, there is a normal form theorem for derivations. Let (∀-elim′)
be the following weakened (∀-elim) rule:

(∀-elim′) (x : ∀ᾱ with C . τ) ∈ A

A ⊢ C[ᾱ := π̄]
A ⊢ x : τ [ᾱ := π̄].

Write A ⊢′ e : σ if this typing is derivable in the system obtained by deleting the
(∀-elim) rule and replacing it with the (∀-elim′) rule. In view of the following
theorem, ⊢′ derivations may be viewed as a normal form for ⊢ derivations.

Theorem 6 A ⊢ e : σ if and only if A ⊢′ e : σ.

Now we turn to properties of assumption sets with acceptable inclusions.

Definition 7 Types τ and τ ′ have the same shape if either

• τ and τ ′ are atomic or

• τ = χ(τ1, . . . , τn), τ ′ = χ(τ ′
1
, . . . , τ ′n), where χ is an n-ary type constructor,

n ≥ 1, and for all i, τi and τ ′i have the same shape.

Lemma 8 If A contains only atomic inclusions (i.e. inclusions among atomic
types) and A ⊢ τ ⊆ τ ′, then τ and τ ′ have the same shape.

Lemma 9 If A contains only atomic inclusions and A ⊢ τ → ρ ⊆ τ ′ → ρ′,
then A ⊢ τ ′ ⊆ τ and A ⊢ ρ ⊆ ρ′.

Similar lemmas hold for the other type constructors.
Finally, we show the correctness of Wos. The properties of close needed to

prove the soundness and completeness of Wos are extracted into the following
two lemmas:

Lemma 10 If (S,B′, σ) = close(A,B, τ) succeeds, then for any e, if A ∪ B ⊢
e : τ then AS ∪B′ ⊢ e : σ. Also, every identifier occurring in B′ or in σ occurs
in B.

Lemma 11 Suppose that A has acceptable inclusions and AR ⊢ BR. Then
(S,B′, σ) = close(A,B, τ) succeeds and

• B′ = {}, if A has no free type variables;

• free-vars(σ) ⊆ free-vars(AS); and

• there exists T such that

1. R = ST ,
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2. AR ⊢ B′T , and

3. σT ≥AR τR.

The advantage of this approach is that close may be given any definition satis-
fying the above lemmas, and Wos will remain correct. We exploit this possibility
in Section 5.

The soundness of Wos is given by the following theorem:

Theorem 12 If (S,B, τ) = Wos(A, e) succeeds, then AS ∪ B ⊢ e : τ . Also,
every identifier in B is overloaded in A or occurs in a constraint of some as-
sumption in A.

The proof is straightforward by induction on the structure of e.
We now establish the completeness of Wos. If our language did not contain

let, then we could directly prove the following theorem by induction.

Theorem If AS ⊢ e : τ , AS has satisfiable constraints, and A has acceptable
inclusions, then (S0, B0, τ0) = Wos(A, e) succeeds and there exists a substitution
T such that

1. S = S0T , except on new type variables of Wos(A, e),

2. AS ⊢ B0T , and

3. AS ⊢ τ0T ⊆ τ .

Unfortunately, the presence of let forces us to a less direct proof.

Definition 13 Let A and A′ be assumption sets. We say that A is stronger
than A′, written A � A′, if A and A′ contain the same inclusions and A′ ⊢ x : τ
implies A ⊢ x : τ .

Roughly speaking, A � A′ means that A can do anything that A′ can. One
would expect, then, that we could prove the following lemma:

Lemma If A′ ⊢ e : τ , A′ has satisfiable constraints, and A � A′, then A ⊢ e : τ .

This lemma is needed to prove the completeness theorem above, but it appears
to defy a straightforward inductive proof.4 This forces us to combine the com-
pleteness theorem and the lemma into a single theorem that yields both as
corollaries and that allows both to be proved simultaneously. We now do this.

Theorem 14 Suppose that A′ ⊢ e : τ , A′ has satisfiable constraints, AS � A′,
and A has acceptable inclusions. Then (S0, B0, τ0) = Wos(A, e) succeeds and
there exists a substitution T such that

1. S = S0T , except on new type variables of Wos(A, e),

2. AS ⊢ B0T , and

4The key difficulty is that it is possible that A � A′ and yet A ∪ C 6� A′ ∪ C.
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3. AS ⊢ τ0T ⊆ τ .

Proof: By induction on the structure of e. For simplicity, assume that the
bound identifiers of e have been renamed so that they are all distinct and so
that they do not occur in A. By Theorem 6, A′ ⊢′ e : τ . Now consider the four
possible forms of e:

• e is x

By the definition of AS � A′, we have AS ⊢′ x : τ . Without loss of
generality, we may assume that the derivation of AS ⊢′ x : τ ends with a
(possibly trivial) use of (∀-elim′) followed by a (possibly trivial) use of (⊆).
If (x : ∀ᾱ with C . ρ) ∈ A, then (x : ∀β̄ with C[ᾱ := β̄]S . ρ[ᾱ := β̄]S) ∈
AS, where β̄ are the first distinct type variables not free in ∀ᾱ with C . ρ

or in S. Hence the derivation AS ⊢′ x : τ ends with

(x : ∀β̄ with C[ᾱ := β̄]S . ρ[ᾱ := β̄]S) ∈ AS

AS ⊢′ C[ᾱ := β̄]S[β̄ := π̄]
AS ⊢′ x : ρ[ᾱ := β̄]S[β̄ := π̄]
AS ⊢′ ρ[ᾱ := β̄]S[β̄ := π̄] ⊆ τ

AS ⊢′ x : τ

We need to show that (S0, B0, τ0) = Wos(A, x) succeeds and that there
exists T such that

1. S = S0T , except on new type variables of Wos(A, x),

2. AS ⊢ B0T , and

3. AS ⊢ τ0T ⊆ τ .

Now, Wos(A, x) is defined by

if x is overloaded in A with lcg ∀ᾱ.τ ,
return ([ ], {x : τ [ᾱ := β̄]}, τ [ᾱ := β̄]) where β̄ are new

else if (x : ∀ᾱ with C . τ) ∈ A,
return ([ ], C[ᾱ := β̄], τ [ᾱ := β̄]) where β̄ are new

else fail.

If x is overloaded in A with lcg ∀γ̄.ρ0, then (S0, B0, τ0) = Wos(A, x) suc-
ceeds with S0 = [ ], B0 = {x : ρ0[γ̄ := δ̄]}, and τ0 = ρ0[γ̄ := δ̄], where δ̄
are new. Since ∀γ̄.ρ0 is the lcg of x, γ̄ are the only variables in ρ0 and
there exist φ̄ such that ρ0[γ̄ := φ̄] = ρ. Let

T = S ⊕ [δ̄ := φ̄[ᾱ := β̄]S[β̄ := π̄]].
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Then
τ0T

= ≪ definition ≫
ρ0[γ̄ := δ̄](S ⊕ [δ̄ := φ̄[ᾱ := β̄]S[β̄ := π̄]])

= ≪ only δ̄ occur in ρ0[γ̄ := δ̄] ≫
ρ0[γ̄ := δ̄][δ̄ := φ̄[ᾱ := β̄]S[β̄ := π̄]]

= ≪ only γ̄ occur in ρ0 ≫
ρ0[γ̄ := φ̄[ᾱ := β̄]S[β̄ := π̄]]

= ≪ only γ̄ occur in ρ0 ≫
ρ0[γ̄ := φ̄][ᾱ := β̄]S[β̄ := π̄]

= ≪ by above ≫
ρ[ᾱ := β̄]S[β̄ := π̄].

So

1. S0T = S ⊕ [δ̄ := φ̄[ᾱ := β̄]S[β̄ := π̄]] = S, except on δ̄. That is,
S0T = S, except on the new type variables of Wos(A, x).

2. Since B0T = {x : τ0T } = {x : ρ[ᾱ := β̄]S[β̄ := π̄]}, it follows that
AS ⊢ B0T .

3. We have τ0T = ρ[ᾱ := β̄]S[β̄ := π̄] and AS ⊢ ρ[ᾱ := β̄]S[β̄ := π̄] ⊆ τ ,
so AS ⊢ τ0T ⊆ τ .

If x is not overloaded in A, then (S0, B0, τ0) = Wos(A, x) succeeds with
S0 = [ ], B0 = C[ᾱ := δ̄], and τ0 = ρ[ᾱ := δ̄], where δ̄ are new. Observe
that [ᾱ := δ̄](S ⊕ [δ̄ := π̄]) and [ᾱ := β̄]S[β̄ := π̄] agree on C and on ρ.

(The only variables in C or ρ are the ᾱ and variables ǫ not
among β̄ or δ̄. Both substitutions map αi 7→ πi and ǫ 7→ ǫS.)

Let T be S ⊕ [δ̄ := π̄]. Then

1. S0T = S ⊕ [δ̄ := π̄] = S, except on δ̄. That is, S0T = S, except on
the new type variables of Wos(A, x).

2. Also, B0T = C[ᾱ := δ̄](S ⊕ [δ̄ := π̄]) = C[ᾱ := β̄]S[β̄ := π̄] (by the
above observation), so AS ⊢ B0T .

3. Finally, τ0T = ρ[ᾱ := δ̄](S ⊕ [δ̄ := π̄]) = ρ[ᾱ := β̄]S[β̄ := π̄] (by the
above observation). Since AS ⊢ ρ[ᾱ := β̄]S[β̄ := π̄] ⊆ τ , we have
AS ⊢ τ0T ⊆ τ .

• e is λx.e′

Without loss of generality, we may assume that the derivation of A′ ⊢′ e : τ
ends with a use of (→-intro) followed by a (possibly trivial) use of (⊆):

A′ ∪ {x : τ ′} ⊢′ e′ : τ ′′

A′ ⊢′ λx.e′ : τ ′ → τ ′′

A′ ⊢′ (τ ′ → τ ′′) ⊆ τ

A′ ⊢′ λx.e′ : τ

13



where x does not occur in A′.

We must show that (S0, B0, τ0) = Wos(A, λx.e
′) succeeds and that there

exists T such that

1. S = S0T , except on new type variables of Wos(A, λx.e
′),

2. AS ⊢ B0T , and

3. AS ⊢ τ0T ⊆ τ .

Now, Wos(A, λx.e
′) is defined by

if x occurs in A, then rename x to a new identifier;
let (S1, B1, τ1) = Wos(A ∪ {x : α}, e′) where α is new;
return (S1, B1, αS1 → τ1).

By our renaming assumption, we can assume that x does not occur in A.
Now we wish to use induction to show that the recursive call succeeds.
The new type variable α is not free in A, so

AS ∪ {x : τ ′} = (A ∪ {x : α})(S ⊕ [α := τ ′]).

Note next that A′ ∪ {x : τ ′} has satisfiable constraints. Now we need
AS ∪ {x : τ ′} � A′ ∪ {x : τ ′}. Both have the same inclusions. Suppose
that A′ ∪ {x : τ ′} ⊢ y : ρ. If y 6= x, then by Lemma 4, A′ ⊢ y : ρ. Since
AS � A′, we have AS ⊢ y : ρ and then by Lemma 5, AS ∪{x : τ ′} ⊢ y : ρ.
On the other hand, if y = x, then the derivation A′∪{x : τ ′} ⊢′ y : ρ must
be by (hypoth) followed by a (possibly trivial) use of (⊆):

A′ ∪ {x : τ ′} ⊢′ x : τ ′

A′ ∪ {x : τ ′} ⊢′ τ ′ ⊆ ρ

A′ ∪ {x : τ ′} ⊢′ x : ρ

Since AS � A′, AS and A′ contain the same inclusions. Therefore, AS ∪
{x : τ ′} ⊢′ τ ′ ⊆ ρ, so by (hypoth) followed by (⊆), AS ∪ {x : τ ′} ⊢′ x : ρ.
Finally, A ∪ {x : α} has acceptable inclusions. In summary,

– A′ ∪ {x : τ ′} ⊢ e′ : τ ′′,

– A′ ∪ {x : τ ′} has satisfiable constraints,

– (A ∪ {x : α})(S ⊕ [α := τ ′]) � A′ ∪ {x : τ ′}, and

– A ∪ {x : α} has acceptable inclusions.

So by induction, (S1, B1, τ1) = Wos(A ∪ {x : α}, e′) succeeds and there
exists T1 such that

1. S⊕ [α := τ ′] = S1T1, except on new variables of Wos(A ∪ {x : α}, e′),

2. (A ∪ {x : α})(S ⊕ [α := τ ′]) ⊢ B1T1, and

3. (A ∪ {x : α})(S ⊕ [α := τ ′]) ⊢ τ1T1 ⊆ τ ′′.
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So (S0, B0, τ0) = Wos(A, λx.e
′) succeeds with S0 = S1, B0 = B1, and

τ0 = αS1 → τ1.

Let T be T1. Then

1. Observe that

S0T

= ≪ definition ≫
S1T1

= ≪ by part 1 of the use of induction above ≫
S ⊕ [α := τ ′], except on new variables of Wos(A ∪ {x : α}, e′)

= ≪ definition of ⊕ ≫
S, except on α.

Hence S0T = S, except on the new type variables of Wos(A ∪ {x :
α}, e′) and on α. That is, S0T = S, except on the new type variables
of Wos(A, λx.e

′).

2. B0T = B1T1 and, by part 2 of the use of induction above, we have
AS ∪ {x : τ ′} ⊢ B1T1. Since x does not occur in A, it follows from
Theorem 12 that x does not occur in B1. Hence Lemma 4 may be
applied to each member of B1T1, yielding AS ⊢ B1T1.

3. Finally,

τ0T

= ≪ definition ≫
αS1T1 → τ1T1

= ≪ α is not a new type variable of Wos(A ∪ {x : α}, e′) ≫
α(S ⊕ [α := τ ′]) → τ1T1

= ≪ definition of ⊕ ≫
τ ′ → τ1T1.

Now by part 3 of the use of induction above, AS ∪ {x : τ ′} ⊢ τ1T1 ⊆
τ ′′, so by Lemma 4, AS ⊢ τ1T1 ⊆ τ ′′. By (reflex) and ((−) → (+)),
it follows that AS ⊢ (τ ′ → τ1T1) ⊆ (τ ′ → τ ′′). In other words,
AS ⊢ τ0T ⊆ (τ ′ → τ ′′). Next, because A′ ⊢ (τ ′ → τ ′′) ⊆ τ and
AS � A′, we have AS ⊢ (τ ′ → τ ′′) ⊆ τ . So by (trans) we have
AS ⊢ τ0T ⊆ τ .

• e is e′e′′

Without loss of generality, we may assume that the derivation of A′ ⊢′ e : τ
ends with a use of (→-elim) followed by a use of (⊆):

A′ ⊢′ e′ : τ ′ → τ ′′

A′ ⊢′ e′′ : τ ′

A′ ⊢′ e′ e′′ : τ ′′

A′ ⊢′ τ ′′ ⊆ τ

A′ ⊢′ e′ e′′ : τ
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We need to show that (S0, B0, τ0) = Wos(A, e
′e′′) succeeds and that there

exists T such that

1. S = S0T , except on new type variables of Wos(A, e
′e′′),

2. AS ⊢ B0T , and

3. AS ⊢ τ0T ⊆ τ .

Now, Wos(A, e
′e′′) is defined by

let (S1, B1, τ1) = Wos(A, e′);
let (S2, B2, τ2) = Wos(AS1, e′′);
let S3 = unify(τ1S2, α → β) where α and β are new;
return (S1S2S3, B1S2S3 ∪ B2S3 ∪ {τ2S3 ⊆ αS3}, βS3).

By induction, (S1, B1, τ1) = Wos(A, e
′) succeeds and there exists T1 such

that

1. S = S1T1, except on new type variables of Wos(A, e
′),

2. AS ⊢ B1T1, and

3. AS ⊢ τ1T1 ⊆ (τ ′ → τ ′′).

Since AS has acceptable inclusions, by Lemma 8 τ1T1 is of the form ρ→ ρ′,
and by Lemma 9 we have AS ⊢ τ ′ ⊆ ρ and AS ⊢ ρ′ ⊆ τ ′′.

Now AS = A(S1T1) = (AS1)T1, as the new type variables of Wos(A, e
′) do

not occur free in A. So by induction, (S2, B2, τ2) = Wos(AS1, e
′′) succeeds

and there exists T2 such that

1. T1 = S2T2, except on new type variables of Wos(AS1, e
′′),

2. (AS1)T1 ⊢ B2T2, and

3. (AS1)T1 ⊢ τ2T2 ⊆ τ ′.

The new type variables α and β do not occur in A, S1, B1, τ1, S2, B2, or
τ2. So consider T2 ⊕ [α, β := ρ, ρ′]:

(τ1S2)(T2 ⊕ [α, β := ρ, ρ′])
= ≪ α and β do not occur in τ1S2 ≫

τ1S2T2

= ≪ no new type variable of Wos(AS1, e
′′) occurs in τ1 ≫

τ1T1

= ≪ by above ≫
ρ→ ρ′

In addition, (α → β)(T2 ⊕ [α, β := ρ, ρ′]) = ρ → ρ′ by definition, so
S3 = unify(τ1S2, α→ β) succeeds and there exists T3 such that

T2 ⊕ [α, β := ρ, ρ′] = S3T3.

So (S0, B0, τ0) = Wos(A, e
′e′′) succeeds with S0 = S1S2S3, B0 = B1S2S3∪

B2S3 ∪ {τ2S3 ⊆ αS3}, and τ0 = βS3.

Let T be T3. Then

16



1. We have

S0T

= ≪ definition ≫
S1S2S3T3

= ≪ by above property of unifier S3 ≫
S1S2(T2 ⊕ [α, β := ρ, ρ′])

= ≪ α and β do not occur in S1S2 ≫
S1S2T2, except on α and β

= ≪ by part 1 of second use of induction and since the ≫
≪ new variables of Wos(AS1, e

′′) don’t occur in S1 ≫
S1T1, except on the new type variables of Wos(AS1, e

′′)
= ≪ by part 1 of the first use of induction above ≫

S, except on the new type variables of Wos(A, e
′).

Hence S0T = S except on the new type variables of Wos(A, e
′e′′).

2. Next,

B0T

= ≪ definition ≫
B1S2S3T3 ∪B2S3T3 ∪ {τ2S3T3 ⊆ αS3T3}

= ≪ by above property of unifier S3 ≫
B1S2(T2 ⊕ [α, β := ρ, ρ′]) ∪B2(T2 ⊕ [α, β := ρ, ρ′])

∪{τ2(T2 ⊕ [α, β := ρ, ρ′]) ⊆ α(T2 ⊕ [α, β := ρ, ρ′])}
= ≪ α and β do not occur in B1S2, B2, or τ2 ≫

B1S2T2 ∪B2T2 ∪ {τ2T2 ⊆ ρ}
= ≪ by part 1 of second use of induction and since the ≫

≪ new variables of Wos(AS1, e
′′) don’t occur in B1 ≫

B1T1 ∪B2T2 ∪ {τ2T2 ⊆ ρ}

By part 2 of the first and second uses of induction above, AS ⊢ B1T1

and AS ⊢ B2T2. By part 3 of the second use of induction above,
AS ⊢ τ2T2 ⊆ τ ′. Also, we found above that AS ⊢ τ ′ ⊆ ρ. So by
(trans), AS ⊢ τ2T2 ⊆ ρ. Therefore, AS ⊢ B0T .

3. Finally, τ0T = βS3T3 = β(T2 ⊕ [α, β := ρ, ρ′]) = ρ′. Now, AS ⊢ ρ′ ⊆
τ ′′ and, since A′ ⊢ τ ′′ ⊆ τ and AS � A′, also AS ⊢ τ ′′ ⊆ τ . So it
follows from (trans) that AS ⊢ τ0T ⊆ τ .

• e is let x = e′ in e′′

Without loss of generality we may assume that the derivation of A′ ⊢′ e : τ
ends with a use of (let) followed by a (possibly trivial) use of (⊆):

A′ ⊢′ e′ : σ
A′ ∪ {x : σ} ⊢′ e′′ : τ ′

A′ ⊢′ let x = e′ in e′′ : τ ′

A′ ⊢′ τ ′ ⊆ τ

A′ ⊢′ let x = e′ in e′′ : τ
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where x does not occur in A′.

We need to show that (S0, B0, τ0) = Wos(A, let x = e′ in e′′) succeeds
and that there exists T such that

1. S = S0T , except on new type variables of Wos(A, let x = e′ in e′′),

2. AS ⊢ B0T , and

3. AS ⊢ τ0T ⊆ τ .

Now, Wos(A, let x = e′ in e′′) is defined by

if x occurs in A, then rename x to a new identifier;
let (S1, B1, τ1) = Wos(A, e′);
let (S2, B′

1
, σ1) = close(AS1, B1, τ1);

let (S3, B2, τ2) = Wos(AS1S2 ∪ {x : σ1}, e′′);
return (S1S2S3, B′

1
S3 ∪ B2, τ2).

Since A′ has satisfiable constraints and A′ ⊢ e′ : σ, it can be shown that
there exists an unquantified type τ ′′ such that A′ ⊢ e′ : τ ′′. Hence by
induction, (S1, B1, τ1) = Wos(A, e

′) succeeds and there exists T1 such that

1. S = S1T1, except on new type variables of Wos(A, e
′),

2. AS ⊢ B1T1, and

3. AS ⊢ τ1T1 ⊆ τ ′′.

By 1 and 2 above, we have (AS1)T1 ⊢ B1T1. Since AS1 has acceptable
inclusions, by Lemma 11 it follows that (S2, B

′

1, σ1) = close(AS1, B1, τ1)
succeeds, free-vars(σ1) ⊆ free-vars(AS1S2), and there exists a substitution
T2 such that T1 = S2T2 and (AS1)T1 ⊢ B′

1
T2.

Now, in order to apply the induction hypothesis to the second recursive
call we need to show that AS ∪{x : σ1T2} � A′ ∪{x : σ}. First, note that
AS∪{x : σ1T2} and A′∪{x : σ} contain the same inclusions. Next we must
show that A′∪{x : σ} ⊢ y : ρ implies AS∪{x : σ1T2} ⊢ y : ρ, Suppose that
A′∪{x : σ} ⊢ y : ρ. If y 6= x, then by Lemma 4, A′ ⊢ y : ρ. Since AS � A′,
we have AS ⊢ y : ρ and then by Lemma 5, AS ∪ {x : σ1T2} ⊢ y : ρ.

If, on the other hand, y = x, then our argument will begin by establishing
that A′ ⊢ e′ : ρ. We may assume that the derivation of A′∪{x : σ} ⊢′ x : ρ
ends with a use of (∀-elim′) followed by a use of (⊆): if σ is of the form
∀β̄ with C . ρ′ then we have

x :∀β̄ with C . ρ′ ∈ A′ ∪ {x : σ}
A′ ∪ {x : σ} ⊢′ C[β̄ := π̄]
A′ ∪ {x : σ} ⊢′ x : ρ′[β̄ := π̄]
A′ ∪ {x : σ} ⊢′ ρ′[β̄ := π̄] ⊆ ρ

A′ ∪ {x : σ} ⊢′ x : ρ

It is evident that x does not occur in C (if x occurs in C, then the deriva-
tion of A′ ∪ {x : σ} ⊢′ C[β̄ := π̄] will be infinitely high), so by Lemma 4
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applied to each member of C[β̄ := π̄], it follows that A′ ⊢ C[β̄ := π̄].
Also, by Lemma 4, A′ ⊢ ρ′[β̄ := π̄] ⊆ ρ. Therefore the derivation
A′ ⊢ e′ : ∀β̄ with C . ρ′ may be extended using (∀-elim) and (⊆):

A′ ⊢ e′ : ∀β̄ with C . ρ′

A′ ⊢ C[β̄ := π̄]
A′ ⊢ e′ : ρ′[β̄ := π̄]
A′ ⊢ ρ′[β̄ := π̄] ⊆ ρ

A′ ⊢ e′ : ρ

So by induction there exists a substitution T3 such that

1. S = S1T3, except on new type variables of Wos(A, e
′),

2. AS ⊢ B1T3, and

3. AS ⊢ τ1T3 ⊆ ρ.

By 1 and 2 above, we have (AS1)T3 ⊢ B1T3, so by Lemma 11 it follows
that there exists a substitution T4 such that

1. T3 = S2T4,

2. AS1T3 ⊢ B′

1
T4, and

3. σ1T4 ≥AS1T3
τ1T3.

Now,

AS1S2T2

= ≪ by first use of Lemma 11 above ≫
AS1T1

= ≪ by part 1 of the first use of induction above ≫
AS

= ≪ by part 1 of the second use of induction above ≫
AS1T3

= ≪ by second use of Lemma 11 above ≫
AS1S2T4

Hence T2 and T4 are equal when restricted to the free variables of AS1S2.
Since, by Lemma 11, free-vars(σ1) ⊆ free-vars(AS1S2), it follows that
σ1T2 = σ1T4.

So, by part 3 of the second use of Lemma 11 above,

σ1T2 ≥AS τ1T3.

Write σ1T2 in the form ∀ᾱ with D . φ. Then there exists a substitution
[ᾱ := ψ̄] such that

AS ⊢ D[ᾱ := ψ̄]

and
AS ⊢ φ[ᾱ := ψ̄] ⊆ τ1T3.
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Using Lemma 5, we have the following derivation:

AS ∪ {x : σ1T2} ⊢ x : ∀ᾱ with D . φ

by (hypoth),
AS ∪ {x : σ1T2} ⊢ D[ᾱ := ψ̄]

by above,
AS ∪ {x : σ1T2} ⊢ x : φ[ᾱ := ψ̄]

by (∀-elim),
AS ∪ {x : σ1T2} ⊢ φ[ᾱ := ψ̄] ⊆ τ1T3

by above,
AS ∪ {x : σ1T2} ⊢ x : τ1T3

by (⊆),
AS ∪ {x : σ1T2} ⊢ τ1T3 ⊆ ρ

by part 3 of the second use of induction above, and finally

AS ∪ {x : σ1T2} ⊢ x : ρ

by (⊆). This completes that proof that AS ∪ {x : σ1T2} � A′ ∪ {x : σ},
which is the same as

(AS1S2 ∪ {x : σ1})T2 � A′ ∪ {x : σ}.

Because A′ ⊢ e′ : σ and A′ has satisfiable constraints, it is easy to see that
A′ ∪ {x : σ} has satisfiable constraints.

Finally, AS1S2 ∪ {x : σ1} has acceptable inclusions.

This allows us to apply the induction hypothesis a third time, showing
that (S3, B2, τ2) = Wos(AS1S2 ∪ {x : σ1}, e

′′) succeeds and that there
exists T5 such that

1. T2 = S3T5, except on new variables of Wos(AS1S2 ∪ {x : σ1}, e
′′),

2. AS ∪ {x : σ1T2} ⊢ B2T5, and

3. AS ∪ {x : σ1T2} ⊢ τ2T5 ⊆ τ ′.

So (S0, B0, τ0) = Wos(A, let x = e′ in e′′) succeeds with S0 = S1S2S3,
B0 = B′

1
S3 ∪B2, and τ0 = τ2.

Let T be T5. Then
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1. Observe that

S0T

= ≪ definition ≫
S1S2S3T5

= ≪ part 1 of third use of induction; the new variables ≫
≪ of Wos(AS1S2 ∪ {x : σ1}, e

′′) don’t occur in S1S2 ≫
S1S2T2, except on new variables of Wos(AS1S2 ∪ {x : σ1}, e

′′)
= ≪ by the first use of Lemma 11 above ≫

S1T1

= ≪ by part 1 of first use of induction ≫
S, except on new variables of Wos(A, e

′).

So S0T = S, except on new variables of Wos(A, let x = e′ in e′′).

2. Next, B0T = B′

1
S3T5 ∪ B2T5 = B′

1
T2 ∪ B2T5. By the first use of

Lemma 11 above, AS ⊢ B′

1T2. By part 2 of the third use of induction
above, AS ∪ {x : σ1T2} ⊢ B2T5. By Theorem 12, every identifier
occurring in B1 occurs in A. So, since x does not occur in A, x
does not occur in B1. By Lemma 10, every identifier occurring in
the constraints of σ1 occurs in B1. Hence x does not occur in the
constraints of σ1. By Theorem 12, every identifier occurring in B2

is overloaded in AS1S2 ∪ {x : σ1} or occurs in some constraint of
some assumption in AS1S2 ∪ {x : σ1}. Since x does not occur in
AS1S2 or in the constraints of σ1, it follows that x does not occur in
B2. Hence Lemma 4 and may be applied to each member of B2T5,
yielding AS ⊢ B2T5. So AS ⊢ B0T .

3. Now, τ0T = τ2T5 and by part 3 of the third use of induction above
and by Lemma 4, we have AS ⊢ τ0T ⊆ τ ′. Also since A′ ⊢ τ ′ ⊆ τ

and since AS � A′, it follows that AS ⊢ τ ′ ⊆ τ . So by (trans),
AS ⊢ τ0T ⊆ τ .

QED

Finally, we get our principal typing result:

Corollary 15 Let A be an assumption set with satisfiable constraints, accept-
able inclusions, and no free type variables. If e is well typed with respect to A,
then (S,B, τ) = Wos(A, e) succeeds, (S′, B′, σ) = close(A,B, τ) succeeds, and
the typing A ⊢ e : σ is principal.

5 Type Simplification

A typical initial assumption set A0 is given in Figure 5. Note that A0 provides
a least fixed-point operator fix, allowing us to write recursive programs.

Now let lexicographic be the following program:
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A0 =































































int ⊆ real ,
if : ∀α.bool → α→ α→ α,

= : ∀α.α→ α→ bool ,
∗ : int → int → int , ∗ : real → real → real ,
true : bool , false : bool ,
cons : ∀α.α→ seq(α) → seq(α),
car : ∀α.seq(α) → α, cdr : ∀α.seq(α) → seq(α),
nil : ∀α.seq(α), null? : ∀α.seq(α) → bool ,
≤ : real → real → bool , ≤ : char → char → bool ,
fix : ∀α.(α → α) → α































































Figure 5: An Example Assumption Set

fix λleq .λx.λy.
if (null? x)

true
if (null? y)

false
if (= (car x) (car y))

(leq (cdr x) (cdr y))
(≤ (car x) (car y))

Function lexicographic takes two sequences x and y and tests whether x lexico-
graphically precedes y, using ≤ to compare the elements of the sequences.

The computation

(S,B, τ) = Wos(A0, lexicographic);
(S′, B′, σ) = close(A0, B, τ).

produces a principal type σ for lexicographic. But if we use the simple close of
Figure 4 we discover, to our horror, that we obtain the principal type

∀α, γ, ζ, ǫ, δ, θ, η, λ, κ, µ, ν, ξ, π, ρ, σ, ι, τ, υ, φ with


















γ ⊆ seq(ζ), bool ⊆ ǫ, δ ⊆ seq(θ), bool ⊆ η, γ ⊆ seq(λ), λ ⊆ κ,
δ ⊆ seq(µ), µ ⊆ κ, γ ⊆ seq(ν), seq(ν) ⊆ ξ, δ ⊆ seq(π),
seq(π) ⊆ ρ, σ ⊆ ι, ≤ : τ → τ → bool , γ ⊆ seq(υ), υ ⊆ τ ,
δ ⊆ seq(φ), φ ⊆ τ , bool ⊆ ι, ι ⊆ η, η ⊆ ǫ, (ξ → ρ → σ) →
(γ → δ → ǫ) ⊆ (α→ α)



















. α

Such a type is clearly useless to a programmer, so, as a practical matter, it is
essential for close to simplify the types that it produces.

We describe the simplification process by showing how it works on lexico-
graphic. The call Wos(A0, lexicographic) returns

([β, o := ξ → ρ→ σ, ρ → σ], B, α),
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where

B =



















γ ⊆ seq(ζ), bool ⊆ bool , bool ⊆ ǫ, δ ⊆ seq(θ), bool ⊆ η,
γ ⊆ seq(λ), λ ⊆ κ, δ ⊆ seq(µ), µ ⊆ κ, γ ⊆ seq(ν), seq(ν) ⊆
ξ, δ ⊆ seq(π), seq(π) ⊆ ρ, σ ⊆ ι, ≤ : τ → τ → bool ,
γ ⊆ seq(υ), υ ⊆ τ , δ ⊆ seq(φ), φ ⊆ τ , bool ⊆ ι, ι ⊆ η,
η ⊆ ǫ, (ξ → ρ→ σ) → (γ → δ → ǫ) ⊆ (α→ α)



















This means that for any instantiation S of the variables in B such that A0 ⊢ BS,
lexicographic has type αS. The problem is that B is so complicated that it is not
at all clear what the possible satisfying instantiations are. It turns out, however,
that we can make (generally partial) instantiations for some of the variables in
B that are optimal, in that they yield a simpler, yet equivalent, type. This is
the basic idea behind type simplification.

There are two ways for an instantiation to be optimal. First, an instantiation
of some of the variables in B is clearly optimal if it is ‘forced’, in the sense that
those variables can be instantiated in only one way if B is to be satisfied. The
second way for an instantiation to be optimal is more subtle. Suppose that there
is an instantiation T that makes B no harder to satisfy and that makes the body
(in this example, α) no larger. More precisely, suppose that A0 ∪B ⊢ BT and
A0 ∪ B ⊢ αT ⊆ α. Then by using rule (⊆), BT and αT can produce the same
types as can B and α, so the instantiation T is optimal. We now look at how
these two kinds of optimal instantiation apply in the case of lexicographic.

We begin by discovering a number of forced instantiations. Consider the
constraint γ ⊆ seq(ζ) in B. By Lemma 8, this constraint can be satisfied only
if γ is instantiated to some type of the form seq(χ); the partial instantiation
[γ := seq(χ)] is forced. There is a procedure, shape-unifier, that finds the most
general substitution U such that all the inclusions in BU are between types of
the same shape.5 In this case, U is













γ := seq(χ),
δ := seq(ψ),
ξ := seq(ω),
ρ := seq(α1),
α := seq(δ1) → seq(γ1) → β1













The instantiations in U are all forced by shape considerations; making these
forced instantiations produces the constraint set

{seq(χ) ⊆ seq(ζ), bool ⊆ bool , bool ⊆ ǫ, seq(ψ) ⊆ seq(θ), . . .}

and the body
seq(δ1) → seq(γ1) → β1.

We have made progress; we can now see that lexicographic is a function that
takes two sequences as input and returns some output.

5Algorithms for shape unification are given in [14] and in [5].
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body: seq(δ1) → seq(γ1) → β1

≤ : τ → τ → bool

α1

π

ψ

γ1

θ

µ

φ

τ

κ

υ

λ

ζ

δ1

χ

ν

ω

bool

σ

β1

ǫ

η

ι

Figure 6: Atomic Inclusions for lexicographic

The new constraint set contains the inclusion seq(χ) ⊆ seq(ζ). By our
restrictions on subtyping, this constraint is equivalent to the simpler constraint
χ ⊆ ζ. Similarly, any constraint of the form τ → ρ ⊆ τ ′ → ρ′ is equivalent
to the pair of constraints τ ′ ⊆ τ and ρ ⊆ ρ′. In this way, we can transform
the constraint set into an equivalent set containing only atomic inclusions. The
result of this transformation is shown graphically in Figure 6, where an inclusion
τ1 ⊆ τ2 is denoted by drawing an arrow from τ1 to τ2. Below the representation
of the constraint set we give the body.

Now notice that the constraint set in Figure 6 contains cycles; for example
ω and ν lie on a common cycle. This means that if S is any instantiation that
satisfies the constraints, we will have both A0 ⊢ ωS ⊆ νS and A0 ⊢ νS ⊆ ωS.
But since the inclusion relation is a partial order, it follows that ωS = νS. In
general, any two types within the same strongly connected component must
be instantiated in the same way. If a component contains more than one type
constant, then, it is unsatisfiable; if it contains exactly one type constant, then
all the variables must be instantiated to that type constant; and if it contains
only variables, then we may instantiate all the variables in the component to
any chosen variable. We have surrounded the strongly connected components of
the constraint set with dotted rectangles in Figure 6; Figure 7 shows the result
of collapsing those components and removing any trivial inclusions of the form
ρ ⊆ ρ thereby created.

At this point, we are finished making forced instantiations; we turn next to
instantiations that are optimal in the second sense described above. These are
the monotonicity-based instantiations.

Consider the type bool → α. By rule ((−) → (+)), this type is monotonic
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body: seq(δ1) → seq(γ1) → ι

ι

δ1 γ1

≤ : τ → τ → bool

θ

µ

φ

τ

κ

υ

λ

ζ bool

Figure 7: Collapsed Components of lexicographic

body: seq(δ1) → seq(γ1) → bool

γ1

≤ : τ → τ → bool

δ1

τ

κ

Figure 8: Result of Shrinking ι, υ, λ, ζ, φ, µ, and θ

in α: as α grows, a larger type is produced. In contrast, the type α → bool
is antimonotonic in α: as α grows, a smaller type is produced. Furthermore,
the type β → β is both monotonic and antimonotonic in α: changing α has no
effect on it. Finally, the type α→ α is neither monotonic nor antimonotonic in
α: as α grows, incomparable types are produced.

Refer again to Figure 7. The body seq(δ1) → (seq(γ1) → ι) is antimonotonic
in δ1 and γ1 and monotonic in ι. This means that to make the body smaller, we
must boost δ1 and γ1 and shrink ι. Notice that ι has just one type smaller than
it, namely bool . This means that if we instantiate ι to bool , all the inclusions
involving ι will be satisfied, and ι will be made smaller. Hence the instantiation
[ι := bool ] is optimal. The cases of δ1 and γ1 are trickier—they both have more
than one successor, so it does not appear that they can be boosted. If we boost
δ1 to υ, for example, then the inclusions δ1 ⊆ λ and δ1 ⊆ ζ may be violated.

The variables υ, λ, ζ, φ, µ and θ, however, do have unique predecessors.
Since the body is monotonic (as well as antimonotonic) in all of these variables,
we may safely shrink them all to their unique predecessors. The result of these
instantiations is shown in Figure 8.
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Now we are left with a constraint graph in which no node has a unique
predecessor or successor. We are still not done, however. Because the body
seq(δ1) → seq(γ1) → bool is both monotonic and antimonotonic in κ, we can
instantiate κ arbitrarily, even to an incomparable type, without making the
body grow. It happens that the instantiation [κ := τ ] satisfies the two inclusions
δ1 ⊆ κ and γ1 ⊆ κ. Hence we may safely instantiate κ to τ .

Observe that we could have tried instead to instantiate τ to κ, but this would
have violated the overloading constraint ≤ : τ → τ → bool . This brings up a
point not yet mentioned: before performing a monotonicity-based instantiation
of a variable, we must check that all overloading constraints involving that
variable are satisfied.

At this point, δ1 and γ1 have a unique successor, τ , so they may now be
boosted. This leaves us with the constraint set {≤ : τ → τ → bool} and the
body seq(τ) → seq(τ) → bool . At last the simplification process is finished; we
can now apply (∀-intro) to produce the principal type

∀τ with ≤ : τ → τ → bool . seq(τ) → seq(τ) → bool ,

which is the type that one would expect for lexicographic.
The complete function close is given in Figure 9. Because this definition of

close satisfies Lemmas 10 and 11, Wos remains correct if this new close is used.
One important aspect of close that has not been mentioned is its use of

transitive reductions [1]. As we perform monotonicity-based instantiations, we
maintain the set of inclusion constraints Ei in reduced form. This provides an
efficient implementation of the guard of the while loop in the case where a
variable α must be shrunk: in this case, the only possible instantiation for α is
its unique predecessor in Ei, if it has one. Similarly, if α must be boosted, then
its only possible instantiation is its unique successor, if it has one.

6 Satisfiability Checking

We say that a constraint set B is satisfiable with respect to an assumption set
A if there is a substitution S such that A ⊢ BS. Unfortunately, this turns out
to be an undecidable problem, even in the absence of subtyping [14, 18]. This
forces us to impose restrictions on overloading and/or subtyping.

In practice, overloadings come in fairly restricted forms. For example, the
overloadings of ≤ would typically be

≤ : char → char → bool ,
≤ : real → real → bool ,
≤ : ∀α with ≤ : α→ α→ bool .

seq(α) → seq(α) → bool

Overloadings of this form are captured by the following definition.

Definition 16 We say that x is overloaded by constructors in A if the lcg of
x in A is of the form ∀α.τ and if for every assumption x : ∀β̄ with C . ρ in A,
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close(A,B, τ):

let Aci be the constant inclusions in A,
Bi be the inclusions in B,
Bt be the typings in B;

let U = shape-unifier({(φ, φ′) | (φ ⊆ φ′) ∈ Bi});
let Ci = atomic-inclusions(BiU) ∪Aci,

Ct = BtU ;
let V = component-collapser (Ci);
let S = UV ,

Di = transitive-reduction(nontrivial-inclusions(CiV )),
Dt = CtV ;

Ei := Di; Et := Dt; ρ := τS;
ᾱ := variables free in Di or Dt or τS but not AS;
while there exist α in ᾱ and π different from α such that

AS ∪ (Ei ∪ Et) ⊢ (Ei ∪Et)[α := π] ∪ {ρ[α := π] ⊆ ρ}
do Ei := transitive-reduction(nontrivial-inclusions(Ei[α := π]));

Et := Et[α := π];
ρ := ρ[α := π];
ᾱ := ᾱ− α

od

let E = (Ei ∪ Et) − {C | AS ⊢ C};
let E′′ be the set of constraints in E in which some α in ᾱ occurs;
if AS has no free type variables,

then if satisfiable(E,AS) then E′ := {} else fail
else E′ := E;

return (S,E′, ∀ᾱ with E′′ . ρ).

Figure 9: Function close
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• ρ = τ [α := χ(β̄)], for some type constructor χ, and

• C = {x : τ [α := βi] | βi ∈ β̄}.

In a type system with overloading but no subtyping, the restriction to overload-
ing by constructors allows the satisfiability problem to be solved efficiently.

On the other hand, for a system with subtyping but no overloading, it is
shown in [20] and [9] that testing the satisfiability of a set of atomic inclusions
is NP-complete. Testing the satisfiability of a set of arbitrary inclusions is shown
in [16] to be PSPACE-hard, and [17] gives a DEXPTIME algorithm.6

In our system, which has both overloading and subtyping, the restriction to
overloading by constructors is enough to make the satisfiability problem decid-
able [14]. But to get an efficient algorithm, it will be necessary to restrict the
subtype relation. This remains an area for future study.

7 Conclusion

This paper gives a clean extension of the Hindley/Milner type system that
incorporates overloading and subtyping. We have shown how principal types
can be inferred using algorithms Wos and close. These algorithms have been
implemented, and in this section we show the principal types inferred (with
respect to the initial assumption set A0 from Figure 5) for a number of example
programs:

• We begin with function reduce (sometimes called foldright), with definition

fix λreduce.
λf.λa.λl. if (null? l )

a
(f (car l) (reduce f a (cdr l)))

The type inferred for reduce is

∀β1, ζ. (β1 → ζ → ζ) → ζ → seq(β1) → ζ.

This is the same type that ML would have inferred.

• Next we consider a variant of reduce.

fix λreduce.
λf.λa.λl. if (null? l )

a
if (null? (cdr l))

(car l)
(f (car l) (reduce f a (cdr l)))

6Since our function close simplifies constraint sets before testing whether they are satisfi-
able, we actually need to deal only with the case of atomic inclusions.
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Now the inferred type is

∀β1, ζ with β1 ⊆ ζ . (β1 → ζ → ζ) → ζ → seq(β1) → ζ.

Here ML would have unified β1 and ζ.

• Function max is

λx.λy.if (≤ y x) x y

Its type is

∀α, β, γ, δ with α ⊆ γ, α ⊆ δ, β ⊆ γ, β ⊆ δ, ≤ : δ → δ → bool .
α→ β → γ .

This surprisingly complicated type cannot, it turns out, be further simpli-
fied without assuming more about the subtype relation.

• Finally, function mergesort is given in Figure 10. The type inferred for
mergesort is

∀σ4 with ≤ : σ4 → σ4 → bool . seq(σ4) → seq(σ4).

Also, the type inferred for split is

∀δ2.seq(δ2) → seq(seq(δ2))

and the type inferred for merge is

∀ι1, θ1, η1, κ with θ1 ⊆ κ, θ1 ⊆ η1, ι1 ⊆ κ, ι1 ⊆ η1, ≤ : κ→ κ→ bool .
seq(ι1) → seq(θ1) → seq(η1),

which is very much like the type of function max above.

The fact that the types inferred in these examples are not too complicated
suggests that this approach has the potential to be useful in practice.

We conclude by mentioning a few ways in which this work could be extended.

• Efficient methods for testing the satisfiability of constraint sets need to be
developed.

• Because our type system can derive a typing in more than one way, the
semantic issue of coherence [6] should be addressed.

• It would be nice to extend the language to include record types, which
obey interesting subtyping rules, but which would appear to complicate
type simplification.
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let split=
fix λsplit.

λlst. if (null? lst)
(cons nil (cons nil nil))
if (null? (cdr lst))

(cons lst (cons nil nil))
let pair=split (cdr (cdr lst)) in

(cons (cons (car lst) (car pair))
(cons (cons (car (cdr lst)) (car (cdr pair)))

nil)) in

let merge=
fix λmerge.

λlst1.λlst2.
if (null? lst1)

lst2
if (null? lst2)

lst1
if (≤ (car lst1) (car lst2))

(cons (car lst1) (merge (cdr lst1) lst2))
(cons (car lst2) (merge lst1 (cdr lst2))) in

fix λmergesort.
λlst. if (null? lst)

nil
if (null? (cdr lst))

lst
let lst1lst2=split lst in

merge (mergesort (car lst1lst2))
(mergesort (car (cdr lst1lst2)))

Figure 10: Example mergesort
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