
 

 

2017 FIU High School Programming Competition 

 

Problem Set 
 

A Hidden Password 

B Slikar 

C Silueta 

D Scaling Recipes 

E Pizza Delivery 

F Bear and Prime Numbers 

G Gemstones 

H The Amazing Human Cannonball 

I Arithmetic 

J Mine the Gradient 



A: Hidden Password 
Insecure Inc. has decided to shift directions after a failed attempt at developing a new encryption 
standard. Their new effort is a password system used to hide a password inside another string of 
characters we denote as a message. However, it is important that the message has a certain property 
relative to the hidden password. 

Let us assume that we denote the characters of the password as c1,c2…cP (although those characters need 
not be distinct). To be a valid message for the password, if you start from the beginning of the message 
and search for any character from the set {c1,c2…cP}, c1 must be the first character found. Subsequently, if 
you continue looking from that point in the message for any character from the set {c2…cP}, c2 must be 
the next character found. Continuing in that manner, c3 must be the next character found from the set 
{c3…cP}, and so on until reaching cP.  

For example, if the password is ABC, then the string HAPPYBIRTHDAYCACEY is a valid message. 

• Notice that A is the first of the set {{A, B, C}} to appear in the message. (The initial H is not 
relevant.) 

• Following the A that was found, the next occurrence from the set {{B, C}} is B. 

• Following the B that was found, the next occurrence from the set {{C}} is indeed C. 

(Note that the A in DAY is not relevant, since we are only looking for a C at this point, and the additional 
A and C in CACEY are not relevant, because we have already completed the password with the first C.) 
However, for the password ABC, the string TRAGICBIRTHDAYCACEY is not a valid message. While 
the A is the first of the set {{A, B, C}} to appear in the string, the next occurrence from the set {{B, C}} 
is C rather than B. Also, the string HAPPYBIRTHDAY is not a valid message for the password ABC 
because the C never appears. 

As an example with duplicate letters in the password, consider the password SECRET. For this password, 
the string SOMECHORESARETOUGH is a valid message. In contrast, the string 
SOMECHEERSARETOUGH is not a valid message, because an extraneous E is found at the point when 
an R is first expected. 

Input 
The input begins with T, the number of test cases, on a single line. This is followed by T lines, each 
containing two strings. The first string is the password, having length P, with 3 ≤ P ≤ 8. The second 
string has length S, with 10 ≤ S ≤ 40. Both strings will consist of only uppercase letters. (That is, neither 
string can include whitespace, lowercase letters, digits, or other special characters.) 

Output 
For each test case, output a single line with the word PASS if the second string is a valid message for the 
password, or FAIL otherwise. 



 

Sample Input 
5 
ABC HAPPYBIRTHDAYCACEY 
ABC TRAGICBIRTHDAYCACEY 
ABC HAPPYBIRTHDAY 
SECRET SOMECHORESARETOUGH 
SECRET SOMECHEERSARETOUGH 
 

Sample Output 
PASS 
FAIL 
FAIL 
PASS 
FAIL 
  



B: Slikar 
The evil emperor Cactus has in his possession the Magic Keg and has flooded the Enchanted Forest! The 
Painter and the three little hedgehogs now have to return to the Beaver’s den where they will be safe from 
the water as quickly as possible! 

The map of the Enchanted Forest consists of R rows and C columns. Empty fields are represented by ‘.’ 
characters, flooded fields by ‘*’ and rocks by ‘X’. Additionally, the Beaver’s den is represented by ‘D’ 
and the Painter and the three little hedgehogs are shown as ‘S’. 

Every minute the Painter and the three little hedgehogs can move to one of the four neighbouring fields 
(up, down, left or right). Every minute the flood expands as well so that all empty fields that have at least 
one common side with a flooded field become flooded as well. Neither water nor the Painter and the three 
little hedgehogs can pass through rocks. Naturally, the Painter and the three little hedgehogs cannot pass 
through flooded fields, and water cannot flood the Beaver’s den. 

Write a program that will, given a map of the Enchanted Forest, output the shortest time needed for the 
Painter and the three little hedgehogs to safely reach the Beaver’s den. Note: The Painter and the three 
little hedgehogs cannot move into a field that is about to be flooded (in the same minute). 

Input 
The first line of input will contain a single integer N that indicates the number of test cases to follow. 
Each test case will contain a line of input containing two positive integers, R and C, both <= 50. 
Following this line will be R lines, each containing C characters (‘.’, ‘*’, ‘X’, ‘D’ or ‘S’). The map will 
contain exactly one ‘D’ character and exactly one ‘S’ character. 

Output 
Output the shortest possible time needed for the Painter and the three little hedgehogs to safely reach the 
Beaver’s den. If this is impossible, your program should output the word “KAKTUS” on a line by itself. 
Clarification of the second sample test case below: The best they can do is to go along the lower border 
and then the left border, and get flooded one minute before reaching the den. 

Sample Input Sample Output 
3 
3 3 
D.* 
... 
.S. 
3 3 
D.* 
... 
..S 
3 6 
D...*. 
.X.X.. 
....S* 

3 
KAKTUS 
6 

 
 



C: Silueta 
The main hero of this task, painter Vincent, spent a great deal of his youth travelling the world. Sights 
from numerous voyages have often been the inspiration for his, nowadays highly praised, works of art. 
On one occasion, Vincent found himself in a metropolis full of skyscrapers so he got down to work right 
away, intoxicated by the marvelous sight. For a number of reasons, incomprehensible to an average 
programmer, Vincent decided to paint only the silhouettes of the skyscrapers seen before him. 
Unfortunately, a week after he finished this masterpiece, the painting spontaneously caught fire. In order 
to reconstruct the painting, Vincent sought help in all directions; architects provided him with the exact 
dimensions of the skyscrapers, physicists ignored air resistance, mathematicians mapped everything onto 
a plane and now it’s your turn! 

From your perspective, Vincent’s skyscrapers are rectangles whose sides are parallel to coordinate axes 
and with one side that lies on the abscissa. Part of the abscissa on the image should be shown with the 
characters ‘*’, the silhouettes of the skyscrapers with ‘#’ and fill the rest of the image with ‘.’. The left 
edge of the image must begin with a skyscraper, whereas the right edge of the image must end with a 
skyscraper. Additionally, in order to verify the results the mathematicians got, output the perimeter of the 
given silhouette not calculating the sides that lie on the abscissa. In the figure below, the dark gray line 
denotes the skyscraper’s silhouette (character ‘#’), and the light gray line is the part of the abscissa 
located on Vincent’s painting (character ‘*’). 

 

Input 
The first line of input contains T, the number of test cases to follow. Each test case is formatted as 
follows: The first line of each test case contains an integer N (1 ≤ N ≤ 100) indicating the number of 
skyscrapers. Each of the next N lines contains three integers Li, Ri and Hi. Note: 1 ≤ Li, Ri, Hi ≤ 1000, and 
3 ≤ (Ri - Li) ≤ 1000. These three integers describe the position of the i-th skyscraper, which in a Cartesian 
coordinate system, is considered a rectangle with its lower left corner in (Li,0) and upper right corner in 
(Ri,Hi). 

Output 
The first line of output must contain the perimeter of Vincent’s silhouette. The next h+1 lines, where h+1 
is the height of the highest skyscraper, must contain Vincent’s drawing as described in the task. 



Sample Input 
2 
3 
1 5 4 
7 11 3 
9 13 5 
6 
2 8 7 
5 13 5 
2 18 3 
23 26 5 
20 31 7 
21 30 10  
 

Sample Output 
28 
........#### 
####....#..# 
#..#..###..# 
#..#..#....# 
#..#..#....# 
************ 
61 
...................#########. 
...................#.......#. 
...................#.......#. 
######............##.......## 
#....#............#.........# 
#....######.......#.........# 
#.........#.......#.........# 
#.........######..#.........# 
#..............#..#.........# 
#..............#..#.........# 
***************************** 
 
 
 
 
  



D: Scaling Recipes 
A recipe is a list of ingredients and a set of instructions to prepare a dish. It is often written for a particular 
number of portions. If you have a recipe for 4 portions and you want to make 6 portions, it turns out that 
simply multiplying the amounts for each ingredient by 1.5 is often wrong! The reason is that the original 
recipe may have been rounded to the nearest teaspoon, gram, etc., and the rounding errors magnify when 
a recipe is scaled. 

￼￼ 

Some recipes are specifically written to ease the task of scaling. These recipes are developed using 
“Baker’s percentages.” Each ingredient is listed not only by weight (in grams), but also as a percentage 
relative to the “main ingredient.” The main ingredient will always have a 100% Baker’s percentage. Note 
that the sum of the Baker’s percentages from all ingredients is greater than 100%, and that the Baker’s 
percentages of some ingredients may exceed 100%. 

To scale a recipe, do the following steps, in order: 

1. Determine the scaling factor by dividing the number of desired portions by the number of portions for 
which the recipe is written; 

2. Multiply the weight of the main ingredient with a 100% Baker’s percentage by the scaling factor. This 
is the scaled weight of the main ingredient; 

3. Calculate the scaled weight of every other ingredient by multiplying its Baker’s percentage by the 
scaled weight of the main ingredient. 

Input 
The first line of input specifies a positive integer T ≤ 20, consisting of the cases to follow. Each case 
starts with a line with three integers R, P, and D: 1 ≤ R ≤ 20 is the number of ingredients, 1 ≤ P ≤ 12 is 
the number of portions for which the recipe is written, and 1 ≤ D ≤ 1000 is the number of desired 
portions. Each of the next R lines is of the form:  

 <name> <weight> <percentage> 
 
where <name> is the name of the ingredient (an alphabetic string of up to 2020 characters with no 
embedded spaces), <weight> is the weight in grams for that ingredient, and <percentage> is its Baker’s 
percentage. Both <weight> and <percentage> are floating-point numbers with exactly one digit after the 
decimal point. Each recipe will only have one ingredient with a Baker’s percentage of 100%. 



Output 
For each case, print the Recipe # followed by a space and the appropriate case number (see sample output 
below). This is followed by the list of ingredients and their scaled weights in grams. The name of the 
ingredient and its weight should be separated by a single space. Each ingredient is listed on its own line, 
in the same order as in the input. After each case, print a line of 40 dashes (’-’). Round your answers to 
the nearest 0.1g. 

Sample Input 
2 
6 4 20 
palmOil 50.9 11.2 
ginger 12.0 2.7 
lamb 453.6 100.0 
shallots 1134.0 250.0 
figs 82.5 18.2 
beefSoup 10.0 2.2 
4 5 8 
Milk 265.0 93.0 
DisodiumCitrate 11.0 4.0 
SharpCheddar 285.0 100.0 
Macaroni 240.0 84.0  
 

Sample Output 
Recipe # 1 
palmOil 254.0 
ginger 61.2 
lamb 2268.0 
shallots 5670.0 
figs 412.8 
beefSoup 49.9 
---------------------------------------- 
Recipe # 2 
Milk 424.1 
DiodiumCitrate 18.2 
SharpCheddar 456.0 
Macaroni 383.0 
---------------------------------------- 
 
 
 
 
 
  



E: Pizza Delivery 
Your Irish pizza and kebab restaurant is doing very well. Not only is the restaurant full almost every 
night, but there are also an ever increasing number of deliveries to be made, all over town. To meet this 
demand, you realize that it will be necessary to separate the delivery service from the restaurant. A new 
large kitchen, only for baking pizzas and being a base for deliveries, has to be established somewhere in 
town. 

The main cost in the delivery service is not the making of the pizza itself, but the time it takes to deliver 
it. To minimize this, you need to carefully plan the location of the new kitchen. To your help you have a 
database of all last year’s deliveries. For each location in the city, you know how many deliveries were 
made there last year. The kitchen location will be chosen based on the assumption that the pattern of 
demand will be the same in the future. 

Your city has a typical suburban layout – an orthogonal grid of equal-size square blocks. All places of 
interest (delivery points and the kitchen) are considered to be located at street crossings. The distance 
between two street crossings is the Manhattan distance, i.e., the number of blocks you have to drive 
vertically, plus the number of blocks you have to drive horizontally. The total cost for a delivery point is 
its Manhattan distance from the kitchen, times the number of deliveries to the point. Note that we are only 
counting the distance from the kitchen to the delivery point. Even though we always drive directly back to 
the kitchen after a delivery is made, this (equal) distance is not included in the cost measure. 

Input 
On the first line, there is a number, 1 ≤ n ≤ 20, indicating the number of test cases. Each test case begins 
with a line containing two integers x and y (1 ≤ x, y ≤ 1000), indicating the width and height of the two-
dimensional street grid. Next follow y lines, each containing x integers indicating the number of deliveries 
d (0 ≤ d ≤ 1000) made to each street crossing last year. 

Output 
For each test case, output the least possible total delivery cost (the sum of all delivery costs last year), 
assuming that the kitchen was located optimally. There should be one line for each test case, with an 
integer indicating the cost, followed by a single space and the word “blocks”. 

Sample Input 
2 
4 4 
0 8 2 0 
1 4 5 0 
0 1 0 1 
3 9 2 0 
6 7 
0 0 0 0 0 0 
0 1 0 3 0 1 
2 9 1 2 1 2 
8 7 1 3 4 3 
1 0 2 2 7 7 
0 1 0 0 1 0 
0 0 0 0 0 0  

 
Sample Output 
55 blocks 
162 blocks



F: Bear and Prime Numbers 
Recently, the bear started studying data structures and faced the following problem. You are given a 
sequence of integers x1, x2, ..., xn of length n, and m queries, each characterized by two integers li and ri. 
Let's introduce f(p) to represent the number of such indexes k, such that xk is divisible by p. The answer to 
the query li, ri is the sum of all f(p), where p is a member of the set of prime numbers from segment [li, ri] 
(both borders are included in the segment). Help the bear cope with the problem. 

Input 
The first line contains T, the number of test cases (1 ≤ T ≤ 10). Each of the next T lines contains the 
following data: The first line contains integer n (1 ≤ n ≤ 106). The second line contains n integers 
x1, x2, ..., xn (2 ≤ xi ≤ 107). The numbers are not necessarily distinct. The third line contains integer m 
(1 ≤ m ≤ 50,000). Each of the following m lines contains a pair of space-separated integers, li and ri (2 ≤ li 
≤ ri ≤  2*109) — the numbers that characterize the current query. 

Output 
For each test case, print the following: The word “Case “, followed by the integer case number, followed 
by a colon (:). On the next m lines, print m integers — the answers to the queries, in the same order the 
queries appear in the input. 

Sample Input Sample Output 
2 
6 
5 5 7 10 14 15 
3 
2 11 
3 12 
4 4 
7 
2 3 5 7 11 4 8 
2 
8 10 
2 123 

Case 1: 
9 
7 
0 
Case 2: 
0 
7 
 

 

Notes: Consider the first sample, which contains 3 queries.  

• The first query is l = 2, r = 11. Sum = f(2) + f(3) + f(5) + f(7) + f(11) = 2 + 1 + 4 + 2 + 0 = 9. 
• The second query is l = 3, r = 12. Sum = f(3) + f(5) + f(7) + f(11) = 1 + 4 + 2 + 0 = 7. 
• The third query is l = 4, r = 4. This interval has no prime numbers, so the sum equals 0. 

 
  



G: Gemstones 
If you’ve ever studied Geology in the field, it’s a fascinating experience. For example, you might collect 
some rocks, take them back to the lab and try to figure out what you found. Each rock is composed of 
various elements, so to make it simple, we will assume that each possible element is represented by a 
lower-case Latin letter from 'a' to 'z'. Furthermore, an element can be present multiple times in the same 
rock. An element is called a gem-element if it occurs at least once in every rock (from your collection). 
Here is your task: given a list of  rocks with their compositions, display the number of gem-elements that 
exist in those rocks. 

Input 
The first input line contains T (1 ≤ T ≤ 20), the number of test cases. The remaining lines contain test 
cases. Each test case will contain the following input: The first line consists of an integer, N (1 ≤ N ≤ 
100), the number of rocks in the sample collection. Each of the next N  lines contains the composition of a 
single rock. Each composition consists of only lower-case English letters, and its length is between 1 and 
100. 

Output 
For each test case, print the number of gem-elements common to all the rocks. If there are none, print 0 
(zero). For example, in the first test case shown below, "a" and "b" are the only two types of gem-
elements, since these are the only characters that occur in every rock's composition. 

Sample Input 
2 
3 
abcdde 
baccd 
eeabg 
4 
xbcxxe 
bayxdc 
eyxbgc 
abxccy 
 

Sample Output 
2 
3 
 
 
 
 
 
 
 
 
© HackerRank 2017 
  



H: The Amazing Human Cannonball 
The amazing human cannonball show is coming to 
town, and you are asked to double-check their 
calculations to make sure no one gets injured! The 
human cannonball is fired from a cannon that is a 
distance x1 from a vertical wall with a hole through 
which the cannonball must fly. The lower edge of the 
hole is at height h1 and the upper edge is at height h2. 
The initial velocity of the cannonball is given as v0 and 
you also know the angle θ of the cannon relative to the 
ground.  

Thanks to their innovative suits, human cannonballs can fly without air 
resistance, and thus their trajectory can be modeled using the formulas 
shown here,  where x(t), y(t) provides the position of a cannon ball at time t 
that is fired from point (0,0). g is the acceleration due to gravity (g = 9.81 
m/s2).  

Write a program to determine if the human cannonball can make it safely through the hole in the wall. To 
pass safely, there has to be a vertical safety margin of 1 m both below and above the point where the 
ball’s trajectory crosses the centerline of the wall. 

Input 
The input will consist of up to 100 test cases. The first line contains an integer N, denoting the number of 
test cases that follow. Each test case has 5 parameters: v0, θ, x1, h1, h2, separated by spaces. v0 (0 < v0 ≤ 
200) represents the ball’s initial velocity in m/s. θ is an angle given in degrees (0 < θ < 90), x1 (0 < x1 < 
1000) is the distance from the cannon to the wall, h1 and h2 (0 < h1 < h2 < 1000) are the heights of the 
lower and upper edges of the wall, respectively. All numbers are floating point numbers. 

Output 
Each line of output is a separate test case. If the cannon ball can safely make it through the wall, output 
“Safe”. Otherwise, output “Not Safe”. 

 

Sample Input Sample Output 
11 
19 45 20 9 12 
20 45 20 9 12 
25 45 20 9 12 
20 43 20 9 12 
20 47.5 20 9 12 
20 45 17 9 12 
20 45 24 9 12 
20 45 20 10 12 
20 45 20 9 11 
20 45 20 9.0 11.5 
20 45 18.1 9 12 

Not Safe 
Safe 
Not Safe 
Not Safe 
Not Safe 
Not Safe 
Not Safe 
Not Safe 
Not Safe 
Safe 
Safe 

 
© open.kattis.com 



I: Arithmetic 
Ever wonder what will happen when you meet a person who uses a different base system to talk about 
numbers? For example, when you hear someone saying this mysterious number 1010110001 (which is in 
binary), can you quickly convert it to its decimal form, 689? 

In Harkerland, everyone uses the octal numeral system (base 8) when talking about numbers. Therefore, 
new immigrants often have difficulties parsing numbers quickly. One of them is Alex, who used to live in 
a place where the hexadecimal numeral system (base 16) was adopted. In order to adapt to the Harkerland 
lifestyle as soon as possible, he wants to perform instant octal-to-hexadecimal conversion. Naturally, Alex 
wants you to use a computer program to accomplish the base conversion. 

Input 
The first line of input indicates the number of test cases to follow. Then for each test case, input consists 
of a single non-negative integer k (k > 0), written in base 8. The integer will have no leading zeros and 
will be less than  82000. 

Output 
For each test case, output the same integer, written in base 16. The output must not include any extra 
leading zeroes. Use capital letters A, B, ……, F to represent the values 10,11,…,15 in hexadecimal. For 
the sample input test case #1 below, 44448 equals 234010, which also equals 92416. 

Sample Input 
4 
4444 
20 
3211 
7654321001234566 
 

Sample Output 
924 
10 
689 
FAC688053976 
 
  



J: Mine the Gradient 
If we need to be prepared for the possible danger of an alien invasion, the first thing to do is to find out 
where can they come from. One way to determine if a planet is inhabited by intelligent creatures is to 
study high resolution pictures of planets trying to find typical characteristics of effects of intelligent life. 
There are so many habitable planets that a computer program must be written for this task. One distinctive 
feature of a colonized planet is the presence of surface mines. An alien mine is a square structure with a 
depth uniformly decreasing from one of the sides of the square towards the opposite. 

Your task is to find the largest mine on a provided bitmap image of a planet. The 
picture is a rectangular grid of numbers between 0 and 65,535, representing the 
shades of grey. Mines will appear as squares of either the same shade or with 
shade levels gradually and uniformly changing from one side to another. See the 
figure for an example. Your program will consider only square mines in some 
special orientations. 

An axis-parallel square is the set of pixels (i, j) such that c1 ≤ i ≤ c2 and r1 ≤ j ≤ r2 for some c1, c2, r1, r2, 
and (c2 – c1) = (r2 – r1). A vertically (horizontally) oriented mine is an axis-parallel square for which there 
exist integers S and K such that the shade of every pixel (i, j) of the square is equal to S + iK (S + jK for 
horizontally oriented mines). A diagonally oriented mine is an axis-parallel square for which there exist 
integers Q ∈ {1, −1}, S and K such that the shade of every pixel (i, j) of the square is equal  
to S + (i + Qj) K. 

Input 
The input contains at most  20 descriptions of pictures. The first line of each description contains two 
numbers N and M (1 ≤ N, M ≤ 2,000), the height and width of the picture. The following N lines contain 
M space-separated integers each. The j-th number in the i-th row Ai,j (0 ≤ Ai,j ≤ 65,535) describes the 
shade of gray of the pixel in the i-th row and j-th column of the picture bitmap. The last description is 
followed by a line containing two zeros. 

Output 
For each picture, output the area (number of pixels inside) of the largest horizontal, vertical, or diagonal 
mine. 

Sample Input Sample Output 
4 4 
10 1 13 20 
18 9 11 13 
5 7 9 6 
6 5 7 7 
3 3 
10 1 13 
18 9 11 
5 1000 9 
4 4 
10 12 15 20 
5 9 13 10 
5 9 13 6 
5 9 13 7 
0 0 

4 
1 
9 



 


	Sample Output
	Sample Input
	F: Bear and Prime Numbers
	Input
	Output

	G: Gemstones
	Input
	Output
	Sample Input
	Sample Output

	H: The Amazing Human Cannonball
	Input
	Output

	I: Arithmetic
	Input
	Output
	Sample Input
	Sample Output

	J: Mine the Gradient
	Input
	Output


