
International Journal of Cloud Computing (ISSN 2326-7550)                        Vol. 1, No. 1, January-March 2013 

http://hipore.com/ijcc  26 

CROSS	CLOUD	MAPREDUCE:	A	RESULT	INTEGRITY	CHECK	
FRAMEWORK	ON	HYBRID	CLOUDS	

Yongzhi	Wang*,	Jinpeng	Wei*,	Mudhakar	Srivatsa§	
*	Florida	international	University,	Miami,	USA	

§	IBM	T.J.	Watson	Research	Center,	Yorktown	Heights,	USA	
ywang032@cis.fiu.edu,	weijp@cis.fiu.edu,	msrivats@us.ibm.com	

Abstract	
Large‐scale	adoption	of	MapReduce	computations	on	public	clouds	is	hindered	by	the	lack	of	trust	on	the	participating	
virtual	machines,	because	misbehaving	worker	nodes	can	compromise	the	integrity	of	the	computation	result.	In	this	
paper,	we	propose	a	novel	MapReduce	framework,	Cross	Cloud	MapReduce	(CCMR),	which	overlays	the	MapReduce	
computation	on	top	of	a	hybrid	cloud:	the	master	that	is	 in	control	of	the	entire	computation	and	guarantees	result	
integrity	runs	on	a	private	and	trusted	cloud,	while	normal	workers	run	on	a	public	cloud.	In	order	to	achieve	high	
accuracy,	we	propose	a	result	integrity	check	scheme	on	both	the	map	phase	and	the	reduce	phase.	On	the	other	hand,	
we	strive	to	reduce	the	performance	overhead	by	reducing	the	cross‐cloud	communication	and	merging	sub‐tasks.	We	
implement	 CCMR	 based	 on	 Apache	 Hadoop	 MapReduce	 and	 evaluate	 it	 on	 Amazon	 EC2.	 Both	 theoretical	 and	
experimental	 analysis	 show	 that	 our	 approach	 can	 guarantee	 high	 result	 integrity	 in	 a	 hybrid	 cloud	 environment	
while	incurring	non‐negligible	performance	overhead	(e.g.,	when	16.7%	workers	are	malicious,	CCMR	can	guarantee	
at	least	99.52%	of	accuracy	with	33.6%	of	overhead	when	replication	probability	is	0.3	and	the	credit	threshold	is	50).	
Keywords:		MapReduce,	Integrity	Assurance,	Hybrid	Cloud	
__________________________________________________________________________________________________________________
1. INTRODUCTION	

MapReduce (Dean & Ghemawat, 2008) has become the 
dominant paradigm for large-scale data processing 
applications such as web indexing, data mining, and 
scientific simulation. However, MapReduce applications 
normally are running on a cluster of hundreds or thousands 
of computation nodes. Most MapReduce customers cannot 
afford or do not want to invest in computer clusters of such 
a large scale. The emergence of Cloud Computing provides 
an economical alternative for getting a large-scale cluster on 
demand, thus MapReduce in the cloud has been embraced 
by the market with enthusiasm. For example, various 
services such as Amazon Elastic MapReduce and Microsoft 
Daytona are provided to facilitate the transition of 
MapReduce applications to the cloud. 

However, MapReduce applications running on the cloud 
suffer from the integrity vulnerability problem: malicious 
participants can render the overall computation result 
useless. While the cloud vendors can be trusted and the 
cloud infrastructure (i.e., the virtualization layer) can be 
assumed to be secure, the virtual machines and the 
MapReduce applications installed in the virtual machines 
cannot be trusted to always return correct results. For 
instance,  (Balduzzi, Zaddach, Balzarotti, Kirda, & 
Loureiro, 2012) and  (Bugiel, Nürnberger, Pöppelmann, 
Sadeghi, & Schneider, 2011) point out a security 
vulnerability that Amazon EC2 suffers from: some members 
of the EC2 community can create and upload malicious 
Amazon Machine Images (AMIs), which, if widely used, 
could flood the EC2 cloud with virtual machine instances 
that contain malicious applications, including MapReduce. 
The above threat puts a MapReduce customer in a dilemma: 

using public clouds has economic advantage but incurs the 
risk of getting wrong computation results; on the other hand, 
avoiding the public cloud completely (i.e., running 
everything “in house” or in the private cloud) can guarantee 
result accuracy, but there will be less economic benefit. 

In this paper, we propose Cross Cloud MapReduce 
(CCMR for short) that combines the benefits of private 
clouds and public clouds. CCMR overlays the MapReduce 
framework on top of a hybrid cloud which consists of a 
private cloud and a public cloud. The master that is in 
control of the entire computation and guarantees result 
integrity runs on a private and trusted cloud, while normal 
workers run on the public cloud and are untrusted. We 
further introduce a special type of workers (called verifiers) 
on the private cloud to detect collusive malicious workers 
on the public cloud. The key rationale of our solution is to 
retain control and trust “at home”, while delegating the 
more resource-intensive computations to the public cloud. 

We explore the design space of result integrity checking 
in both phases of MapReduce: the map phase and the reduce 
phase. We extend the capability of the master to propose the 
result integrity check mechanism, which combines several 
integrity assurance techniques (replication (Golle & 
Stubblebine, 2002), verification  (Du, Jia, Mangal, & 
Murugesan, 2004), and credit-based trust management  
(Zhao, Lo, & Dickey, 2005)). Due to the different properties 
of map and reduce phases, CCMR uses the result integrity 
check on different objects. In the map phase, integrity check 
is performed on map tasks. In the reduce phase, CCMR 
factors each reduce task into multiple sub-tasks and applies 
the integrity check on sub-tasks. In order to improve 
performance of the reduce phase, we propose the request 
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bucketing technique to further reduce the performance 
overhead.  

Our theoretical simulation (in Section 4.3) shows that 
when credit threshold T is set to 50 (in the map phase), and 
replication probability r is set to 0.5, CCMR can guarantee a 
job error rate of less than 1% when less than half of workers 
on the public cloud are malicious, and a job error rate of less 
than 9% when all the workers on the public cloud are 
malicious. When T is set to 600 (in the reduce phase) and r 
is set to 0.16, CCMR can guarantee a job error rate of 0% 
when less than half of workers are malicious, and a job error 
rate of less than 6% when all the workers are malicious. 

Our experiment result shows that CCMR introduces 
19% to 83% of delay depending on the replication 
probability r in the map phase. It also shows that CCMR can 
introduce 29% of delay on average in the reduce phase 
when applying the request bucketing technique. 

We make the following contributions in this paper: 1) 
we propose a novel cross-cloud MapReduce architecture 
that combines the benefits of private clouds and public 
clouds; 2) we propose a result integrity check mechanism 
that combines several integrity assurance technique to 
enhance the result integrity of MapReduce on both the map 
and reduce phases; 3) we analyze the security of CCMR and 
quantitatively measure its accuracy and overhead; 4) we 
implement CCMR based on Apache Hadoop MapReduce 
and run a series of experiments over the commercial public 
cloud (Amazon EC2). We show that CCMR is an efficient 
framework to guarantee high computation integrity. 

The rest of this paper is organized as follows. Section 2 
describes the system assumptions and attacker model. 
Section 3 presents the system design of CCMR. Section 4 
makes the theoretical analysis in terms of security, accuracy, 
and overhead. Section 5 describes and analyzes the 
experiment result. Section 6 discusses the related work, and 
Section 7 concludes the paper. 

 

2. SYSTEM	ASSUMPTIONS	AND	ATTACKER	
MODEL	

2.1 SYSTEM	ASSUMPTIONS		
In CCMR, we assume the private cloud is trusted since it 

is deployed within the user’s organization. Therefore, the 
master and the verifiers, which are deployed on the private 
cloud, are trusted. On the public cloud, we assume the 
infrastructure provided by the cloud provider, such as the 
virtualized hardware and network, is trusted. However, we 
assume the virtual image used by the customer is untrusted. 
That makes the MapReduce entities running on the public 
cloud untrusted. Since our paper only focuses on the 
MapReduce computing, we assume Distributed File System 
(DFS) of MapReduce is trusted. For example, the integrity 
of DFS can be guaranteed by the techniques proposed in  
(Popa, Lorch, Molnar, Wang, & Zhuang, 2011) and  
(Bowers, Juels, & Oprea, 2009).  

In CCMR, the master requires that each worker who 
runs a task/sub-task submit the hash value of its 
computation results to the master. We assume the hash 
value to be consistent with the actual task/sub-task output. 
Such an assumption can be realized by applying the 
commitment-based protocol proposed in  (Wei, Du, Yu, & 
Gu, 2009) (i.e., the previous worker commits the task output 
to the master by the hash value. The later worker who takes 
the previous task’s output as input will return the input hash 
value to the master. The master compares the hash values to 
ensure the consistency of the hash value and the 
corresponding task output). Finally, we assume that the 
tasks running on each worker are deterministic. This 
assumption guarantees that multiple executions of the same 
task/sub-task by honest workers return the same result.  

 
2.2 ATTACKER	MODEL	

We model the attacker as an intelligent adversary that 
controls the malicious nodes on the public cloud. It receives 
and correlates information collected by the malicious nodes 
and coordinates them to cheat at the right time in order to 
introduce as many errors as possible to the final result 
without detection. For example, if the master replicates the 
same task on two malicious workers, the adversary can 
instruct them to return the same erroneous results (i.e., to 
collude) so that simply comparing the results cannot detect 
the error. We call such malicious workers collusive workers.  

 

3. SYSTEM	DESIGN	
3.1 SYSTEM	OVERVIEW	AND	ARCHITECTURE	

CCMR overlays MapReduce on a hybrid cloud 
consisting of one private cloud and one public cloud, which 
is shown in Figure 1. The master node and a small number 
of slave nodes (called verifiers) are deployed on the trusted 
private cloud within the customer’s organization. Other 
slave nodes (called workers) and Distributed File System 
(DFS) are deployed on the public cloud. According to our 
assumption, the verifiers, the master and the DFS are 
trusted, yet the workers are untrusted.  
In both the map and the reduce phases, CCMR defines three 
types of tasks: the original task, the replication task, and the 
verification task. The original and replication tasks are 
executed by the workers on the public cloud. The 
verification tasks are executed by the verifier on the private 
cloud. The replication task repeats the original task’s work 
to validate the original task result. Since the replication 
tasks are executed by the untrusted public cloud worker, the 
verification tasks can check the replication task result by re-
executing the task on the verifier. In the map phase, the 
replication and verification task completely repeat the 
original map task’s work. While in the reduce phase, the 
replication and verification reduce task repeats only part of 
the original reduce task. Each replication/verification reduce 
task consists of one or several small portions of original 
reduce task. Each portion of task is called a sub-task. 
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Figure 1. Architecture of CCMR. 

In both Map and Reduce phase, CCMR applies a two-
layer check on each returned original task/sub-task result:  
replication and verification. In order to achieve high 
accuracy, credit based trust management is applied on each 
worker. The master only accepts a worker’s task/sub-task 
results when it achieves certain credit threshold. 

The task/sub-task execution in CCMR differs from the 
original MapReduce in both the map and reduce phase. 
Rather than passively waiting for the worker to ask for 
task/sub-task, the master of CCMR randomly selects the 
worker to execute a certain task/sub-task. When a task/sub-
task is finished, CCMR requires the worker to return the 
result. In order to reduce the communication cost, the 
worker only returns the hash value of the result. Since the 
replication and verification tasks are only used to evaluate 
the correctness of the original tasks, the actual result of 
replication and verification task/sub-tasks will not be stored 
back to the DFS.  

Given the different characteristic of map and reduce 
phases, we propose different integrity check solutions. 

 
3.2 MAP	PHASE	INTEGRITY	CHECK	

CCMR applies two-layer check on each returned 
original map task result. In the first-layer, CCMR creates a 
replication task and assigns the task to another worker. The 
replication task assignment is applied with a technique 
called hold-and-test, which will be introduced later. When 
the worker returns the replication task result, CCMR 
compares the original and replication task results. If the 
results are not consistent, at least one of the workers are 
cheating, so CCMR will create a verification task and assign 
it to a verifier to detect the malicious mapper(s). If the 
original and replication task results are consistent, CCMR 
launches the second-layer check. In the second-layer check, 
CCMR creates a verification task and assigns it to a verifier 
to verify the consistent results. If the consistent results are 
different from the verification task result, the two mappers 
providing the results are all determined as malicious. The 
reason for the second-layer check is to detect collusive 
workers. To reduce overhead, CCMR creates replication and 
verification tasks with certain probability. Each original 
map task is replicated with replication probability, and each 
pair of consistent results is verified with verification 
probability.  

Since replication or verification is not performed for 
every task, there is a possibility that some bad results can 
evade the detection of the two-layer check. In order to  

 

Figure 2. Control Flow of CCMR in Map Phase 

overcome this drawback, CCMR performs the credit based 
trust management to improve the job result accuracy.  

Initially, the master sets the credit for each mapper as 
zero, and maintains a history cache for each mapper to 
record the id and result (hash value) of original map tasks 
the mapper has executed. When a mapper passes one two-
layer check, the master increments the credit for this mapper 
and updates the mapper’s history cache. The actual task 
result is buffered in the mapper’s local storage before it 
becomes trusted. When a mapper’s credit achieves certain 
threshold (called credit threshold), the mapper becomes 
trusted temporarily. The task results buffered in the 
mapper’s local storage are accepted by the master in a batch. 
At the same time, the credit and the history cache of this 
mapper are reset, and this mapper becomes untrusted again. 
The mapper has to earn credit again in order to submit the 
next batch results to the master. If a mapper fails any two-
layer check before achieving credit threshold, it is 
determined to be malicious and is added to a black list. The 
actual results buffered in its local storage are discarded, and 
the tasks cached in its history cache will be re-executed.  

Figure 2 presents the control flow of CCMR. In the 
figure, W1 and W2 are two slave workers randomly chosen 
from the public cloud. The “Arbitrate/Verify task” step is 
completed by the verifier on the private cloud, and the 
remaining components in the figure are all performed on the 
master. Notice that in the figure, instead of assigning the 
replication and original task simultaneously, the 
“replication” decision (step 3) is made after W1 returns the 
original task result R2 (step 2). We call such a technique 
hold-and-test, and it makes it harder for malicious workers 
to collude because the adversary cannot predict whether the 
replication task will be assigned to another collusive worker. 
A detailed discussion of the benefit of hold-and-test is 
deferred to Section 4.1. 

If the total number of original map tasks in a job is less 
than the credit threshold, CCMR directly assigns all tasks to 
verifiers, since the computing workload is not significant. 
Therefore, the accuracy in this case is still guaranteed. If the 
total number of original map tasks is large enough, a higher 
credit threshold would guarantee a higher accuracy, as our 
theoretic simulation shows (Section 4.3). 
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3.3 REDUCE	PHASE	INTEGRITY	CHECK	
In the reduce phase, the approach presented in Section 

3.2 can be directly applied only if the number of reduce 
tasks is large enough (i.e., bigger than the credit threshold). 
However, in some applications, the reduce task number is 
smaller than the credit threshold, even though the computing 
workload for each reduce task is significant. For instance, 
the word count application in Section 5.2 contains only one 
original reduce task. However, this single task will process 
2.7M of records (1.07GB of data) in the input and generate 
598K of records in the output, and take 262 seconds to 
complete. In this case, directly verifying the entire reduce 
task is expensive in terms of computation and 
communication cost. Therefore, we propose to break down 
each original reduce task into many sub-tasks and apply 
two-layer check on each sub-tasks. 

In the original MapReduce, the master breaks the job 
input into multiple blocks. Each map task processes one 
block and generates the task output in the format of <key, 
value> tuples, which are sorted by key. Reduce tasks will 
process the output of map tasks and also generate <key, 
value> tuples as reduce task output. The output is also 
sorted by key. Each reduce task only processes certain map 
output tuples with specific keys, which are determined by 
the partition function.  

Our reduce phase integrity check design is based on the 
following intuition. We observe that both the map tasks and 
the reduce tasks outputs are sorted by key. For each key in 
the reduce output, if we can precisely pinpoint the map 
output tuples that are related to that key, we can reproduce 
the portion of the reduce task that is related to that reduce 
output key. We call each portion of reduce task as sub-task. 
Therefore, each original reduce task can be divided into 
multiple sub-tasks, each of which is related to one key. By 
applying two-layer check to each sub-task, we can guarantee 
high accuracy of the original reduce task. Here, we 
temporarily define each sub-task to cover one key. We will 
extend this concept later for practicality reason. 

Our reduce phase integrity check uses the same high-
level ideas as the map phase. Each original sub-task returns 
its result to the master in the form of a hash value (we call 
each returned sub-task result as a report). The master 
applies the first-layer (replication) and second-layer 
(verification) check on each report with replication 
probability and verification probability, respectively. The 
generation of a replication sub-task is decided after the 
report of an original sub-task is returned to the master (hold-
and-test). We regulate that an original reduce task result is 
accepted by the master only when all its sub-tasks pass the 
two-layer check, which is essentially a credit-based trust 
management. The credit threshold is the number of sub-
tasks in the original reduce task. When the number of sub-
tasks in an original reduce task is smaller than the credit 
threshold, CCMR directly generates a verification reduce 
task to verify the entire original reduce task. 

The above idea only works conceptually. However, in 
order to make it practical, we need to extend the concept of 
sub-tasks and reports, and overcome the following three 
challenges. 1) Creating a sub-task for each key would incur 
significant overhead because in many cases, the amount of 
keys in a reduce task can be huge (e.g., 598K keys in the 
word count application in Section 5.2). 2) The accuracy only 
relies on the two-layer checks of the sub-task reports 
submitted by the reducer. If a malicious reducer cheats on 
some sub-tasks but does not send these reports to the 
master, the master would have no way to detect the error. 3) 
The replication and verification sub-tasks should efficiently 
locate the portion of map task output with the key they are 
interested in.  

We address the first challenge by extending the concept 
of report and sub-task to cover a range of consecutive keys, 
instead of just one. In other words, we require each report to 
cover a range of (instead of only one) consecutive keys. 
With this improvement, the number of sub-tasks will be 
reduced.  

For the second challenge, CCMR requires that 
consecutive reports in the original reduce task must overlap 
in one key. In addition, the first and last report in each 
original reduce task should cover the first and last key of the 
task output, respectively. The master will check those 
requirements when it receives the reports. Since the reduce 
task result is sorted by the key, this requirement ensures that 
no key in the output is skipped in the reports. In case that 
the master does not know the first and last key in the 
original reduce task output, the master can insert dummy 
records in the job input data, which will generate reduce 
result tuples with predictable smallest and largest keys. For 
example, when the type of the key is integer, the master can 
insert records with keys Integer.MIN_VALUE and 
Integer.MAX_VALUE. When the reduce task is complete, 
the output can be sanitized by removing the output records 
related to the dummy input records. 

For the third challenge, each map task in CCMR builds a 
key table to facilitate the record look up in the map task 
output, as shown in Figure 3. When a sub-task wants to 
fetch the map output within a certain key range (e.g., Key2 
to Key 9) from the map task output file, it will locate the 
position through the key table of that task. In the original 
MapReduce, each map task stores the map output file 
locally, which consists of key-value pairs sorted by key. 
Notice that the lengths of keys and values vary and multiple 
key-value pairs can have the same key (e.g., Key 3). For 
brevity, we call consecutive key-value pairs in the map 
output file with the same key as a block. Each record in the 
key table corresponds to a block in the map output file. It 
has three fields, indicating the start position of the block, the 
length of the key, and the length of the block. Since the 
lengths of keys and values vary, each  access to a key on the 
map output file needs to go through the key table, which has 
the fixed record length. The key table records are sorted by 
key, CCMR can apply binary search to look up the records 
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within the request key range. However, each key 
comparison in the binary search needs to fetch the key in the 
map output file through the key table. When the binary 
search finds the keys (e.g., key 3 through key 8) between the 
request range (e.g., key 2 to key 9), the key position and the 
record length direct the reducer to fetch the portion of map 
output. Since it is the mapper who creates the key table, a 
malicious mapper could manipulate its content to fool 
CCMR. As a defense, CCMR requires each map task to 
submit the hash value of its key table to the master along 
with that of task result. The consistency between the hash 
value and the actual key table can be guaranteed by the 
commitment-based protocol  (Wei, Du, Yu, & Gu, 2009). 

Figure 4 shows how CCMR works in the reduce phase 
of word count application. The word count application 
calculates the frequency of each word appeared in a 
collection of text files. For simplicity, our example only has 
two map tasks (map 0 and map 1) and one original reduce 
task (reduce 0). As Figure 4 shows, each map task creates a 
key table (Step 1). When the original reduce task (reduce 0) 
starts to output (step 3), sub-task reports (e.g., report 1 and 
2) are sent to the master sequentially. The report format is 
<start key, end key, hash value of the output records 
covered in the key range> (Step 4). Since consecutive 
reports must overlap in one key (According to the solution 
of challenge 2), the key “Driver” appears in both report 1 
and report 2. When the master receives report 1 (Step 5), it 
launches the first-layer check by initiating a replication sub-
task (with replication probability). The replication sub-task 
fetches input with a key range of (Apple, Driver) from each 
map task (map 0 and map 1) through key tables (Step 7). 
When it completes reducing (Step 8), the replication sub-
task sends a report to the master (Step 9), and the master 
compares the report with the original sub-task report (Step 
10). If they are consistent, a second-layer check is 
performed to verify the consistent results. The verification 
sub-task will be created if necessary (Step 11). 

 
3.4 REQUEST	BUCKETING	

One draw back of reduce phase design in Section 3.3 is 
that in order to achieve high accuracy, CCMR will generate 
a large number of sub-tasks. Each sub-task will be executed 
as an individual reduce task. Such a reduce task needs to 
connect to each map tasks, locate the map output position, 
and fetch only a small portion of data. In addition, its setup 
and tear down will consume a certain amount of resource.  

As a result, a big number of sub-tasks can introduce a 
big performance delay. For example, according to the word 
count experiment in Section 5.2, the reduce phase will 
generate 88 replication sub-tasks and six verification sub-
tasks. The execution delay is 43%. We hope to merge 
multiple sub-tasks into one reduce task to improve 
performance, while without sacrificing the accuracy. 
Therefore, we propose the request bucketing technique to 
achieve such goal. 
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Key3 record length
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Figure 3. Locating Map Output Between Key 2 and Key 9 

using Key Table 

 
Figure 4. Control Flow of CCMR in Reduce Phase  

The idea of request bucketing is as follows. We create 
several replication buckets ready to receive replication sub-
task requests. Each buckets has a limited capacity. 

Whenever the master receives a sub-task report from 
original reduce task and decides to generate a replication 
sub-task (first-layer check), instead of generating a reduce 
task just for that single sub-task, the master randomly 
chooses a bucket and stores the sub-task request to this 
bucket. When a bucket achieves its capacity, the master 
generates a replication reduce task, which will contain all 
the sub-task requests in that bucket. Meanwhile, the bucket 
is emptied. The master will randomly choose a worker to 
execute this replication task. The replication task will send 
multiple replication sub-task reports back to the master, 
each of which will correspond to one original sub-task 
report. When a report passes the first-layer check, the master 
will apply the second-layer check to those sub-tasks. 
Similarly to the replication buckets, the master also creates 
several verification buckets to accumulate the verification 
sub-task requests. When a verification bucket is full, the 
master will generate a verification reduce task to merge all 
the requests in that bucket.  

Although the request bucketing technique merges 
multiple sub-tasks into on reduce task, the two-layer check 
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is still performed on each original reduce sub-task. The 
analysis in Section 4.2 and experiment in Section 5.2 will 
show that request bucketing technique does not undermine 
the accuracy of CCMR, while it reduces the execution 
delay.  

 

4. SYSTEM	ANALYSIS	
4.1 QUANTITIVE	ANALYSIS	ON	MAP	PHASE	

Since the major differences of map and reduce phase in 
CCMR is the object used to perform two-layer check (task 
in map phase and sub-tasks in reduce phase), we could use 
similar model to analyze both phases. In this section we give 
quantitative analysis on the map phase. In the next section, 
we will discuss how to adapt the theorem in this section to 
the reduce phase.  

We first analyze the adversary strategy of malicious 
worker. Based on that, we will perform quantitative analysis 
on accuracy and overhead.  

Adversary Strategy: We denote the malicious worker 
fraction on the public cloud as m. We assume that the 
adversary controls all malicious workers. In other words, all 
malicious workers are collusive, and there exists only one 
collusive group. Assuming that the goal of the adversary is 
to inject as many errors as possible and yet not reveal the 
malicious workers, we analyze the strategy of the adversary 
under CCMR as follows. Suppose a task is assigned to a 
malicious worker, two cases are possible for the adversary. 

Case 1. If the adversary has not seen a similar task (i.e., 
the one with the same input) before, it has to make a 
decision on whether to cheat, and remembers the decision, 
the current task and the returned result. Due to the existence 

of hold-and-test (Section 3.2), the adversary is not allowed 
to defer the decision to the time that it sees the replica of the 
current task. If the decision is not to cheat, the worker is 
obviously safe (i.e., not to be caught). If the decision is to 
cheat, the malicious worker can survive the first-layer check 
only when either the current task is not replicated, or the 
replica of the current task is assigned to another malicious 
worker.  

Case 2. If the adversary has seen a similar task before, it 
is assured that the current task is a replication task. It can 
simply ask the worker to take the same action for the current 
task as the one it has seen before. In this case, it is 
guaranteed that the malicious worker will survive the first-
layer check. 

Since in case 2 the adversary just follows its decision 
made previously in case 1, the risk of revealing a malicious 
worker is essentially determined by the adversary’s decision 
in case 1. Because the master controls task assignment and 
replication in a randomized manner, the adversary in case 1 
cannot predict whether cheating at the current task is safe or 
not. On the other hand, since the master constantly applies 
the two-layer check on tasks in a randomized manner, the 
adversary cannot tell whether cheating at the current task 
has a smaller chance of detection than cheating at other 
tasks. Therefore, the only thing the adversary can do in case 
1 is to make a random guess/predict in terms of whether 
cheat can be detected. We model the adversary’s decision 
making behavior in case 1 as a random variable, cheat 
probability c. Note that adversaries who cheat rarely (e.g., 
only cheat once in hundreds of tasks) can still fit in our 
model because we can set c as a small value close to 0.  

 

Item Name Definition 
m malicious worker fraction The fraction of malicious workers on the public cloud. 
c cheat probability The probability that the adversary decides to cheat in Case 1 of the Adversary 

Strategy. 
r replication probability The probability that an original task/sub-task is replicated. 
v verification probability The probability that consistent task/sub-task results are verified. 
T credit threshold The credit a mapper/reducer has to achieve to make its batch of results to be 

accepted by the master. 
L survival length The expected number of batches a malicious worker can submit to the master before 

it is detected. 
E batch error number The expected number of incorrect task/sub-task results in one accepted batch. 
e batch error rate The fraction of incorrect results in one batch of results. 
J job error rate The ratio of incorrect results number to the total results number in one job.
O overhead The expected number of extra executions for each task/sub-task performed on the 

public cloud. 
V verifier overhead The expected number of extra executions for each task/sub-task performed on the 

private cloud. 
K task key number* The number of keys (records) generated by an original reduce task. 
S sub-task key number* The number of keys covered by a sub-task. 
R report number* The number of reports an original reduce task sends to the master. 
B bucket size* The maximum number of sub-task requests contained in a bucket. 
* is only applicable to reduce phase 

Table 1 CCMR System Setting Parameters 
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We define several metrics to measure the accuracy and 
overhead of CCMR for both the map and reduce phases, and 
summarize the parameters in Table 1. Notice that the first 
eleven items are applicable to both phases. The metrics in 
the map phase is with regard to the tasks. When we adapt 
such metrics into reduce phase analysis, we only need to 
substitute the “task” with “sub-task”. The last four items are 
only applicable to the reduce phase. We will discuss them 
in Section 4.2. We perform a series of probabilistic analysis 
and present our analysis result in Theorem 1. This theorem 
can also be applied to the reduce phase by replacing the 
“task” with “sub-tasks”. The argument of such substitution 
is provided in Section 4.2. 
Theorem 1: Assuming that the assignment of tasks/sub-
tasks is uniformly distributed across all workers on the 
public cloud, and the detected malicious workers are not 
added to the black list, the probability for a malicious 
mapper/reducer to survive after executing n original tasks is 
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The verifier overhead for each task/sub-task is 
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The derivation of Sn is the foundation of Theorem 1. Sn 
is the probability summation of all permutations on n 
independent events. Each event falls into one of three cases. 
For each original task/sub-task, if executed on a malicious 
worker, it can pass the two-layer check in one of the 
following three cases: 1) the worker does not cheat; 2) the 
worker cheats, but the task/sub-task is not replicated; 3) the 
worker cheats, the task/sub-task is replicated, but the 
replication task/sub-task is assigned to another malicious 
worker and their results are not verified. The probabilities of 
the above cases are (1-c), c(1-r), and crm(1-v), respectively. 
By summing up the probabilities of different permutations 

of above three cases, we get (1). The complete proof of 
Theorem 1 can be found in the Appendix. 

 
4.2 ANALYSIS	ON	REDUCE	PHASE	

The difference between map phase and reduce phase is 
that the reduce phase performs the two-layer check to the 
original reduce sub-tasks instead of tasks. Although request 
bucketing causes multiple sub-tasks to be replicated or 
verified in a batch, we can still adapt the model of map 
phase (Section 4.1) for the following reasons.  

Firstly, the way that the master performs two-layer 
checks to each original reduce sub-task is the same as it 
does to the tasks in the map phase. Second, even though 
sub-tasks are merged together to execute, the assignment of 
sub-task requests to the buckets and the assignment of 
buckets to the workers are all randomized, which is 
equivalent to the effect of assigning each sub-task request to 
workers randomly. Third, the adversary strategy in Section 
4.1 is also applicable to the reduce phase. If the reducer 
executing the original reduce task is malicious, when it 
sends an original sub-task report to the master, it cannot 
predict whether the replication sub-task will be assigned to 
its colluder. Therefore, the malicious reducer still needs to 
make a random guess on each original sub-tasks. 

The reduce phase design in Section 3.3 (without request 
bucketing) is only a special case where each bucket has a 
capacity of one. Once a sub-task request is assigned to the 
bucket, a replication/verification reduce task is created 
immediately. Hence, the above arguments are also 
applicable to the design without request bucketing 
technique.  

Therefore, to adapt the theoretical analysis result to the 
reduce phase, we only need to change the definition in Table 
1 by replacing the “tasks” with “sub-tasks”. The Theorem 1 
can be also adapted by substituting the “tasks” with “sub-
tasks”.  

We introduce four parameters specific for the reduce 
phase, shown in Table 1 (The last four items). The total 
number of reports a master receives from one original 
reduce task is R  K / S  . In our design, an original reduce 

task result is accepted by the master when its credit achieves 
credit threshold. In other words, we can adjust the 
parameters to have credit threshold T to be equal to the 
report number (i.e., T  R ). When K is big enough, we can 
set T to a big value by adjusting S to ensure high accuracy. 
For example, in the word count application in Section 5.2, 
the single original reduce task output contains 598,000 keys. 
In this case, in order to set T to 600 to ensure high accuracy, 
we can set S as K / R  997. 

When request bucketing is applied, the two-layer check 
is still applied to each sub-task. Also, the assignment of sub-
tasks is still random. Therefore, request bucketing will not 
undermine the CCMR accuracy. In addition, the number of 
sub-tasks is not reduced with the introduction of request 
bucketing. The only thing that is affected is the number of 



International Journal of Cloud Computing (ISSN 2326-7550)                        Vol. 1, No. 1, January-March 2013 

http://hipore.com/ijcc  33 

replication/verification reduce tasks. Suppose the number of 
replication/verification reduce sub-tasks generated in a job 

is R , without request bucketing, the replication/verification 

reduce task number is R , since each sub-task will be 
executed in an independent task. However, with request 
bucketing, the number of replication/verification reduce task 

will be R / B .  
 

4.3 SIMULATION	RESULT	
We present several simulation results based on Theorem 

1 to analyze the relationships among accuracy, overhead and 
other system parameters.  

We first simulate the job error rate under different 
system parameters in Figure 5(a). The four curves show that 
when other parameters (c, v, r and m) are fixed, increasing 
credit threshold T would reduce the job error rate J, and 
when T is greater than 200, J is close to 0 for any parameter 
combinations in the figure. Moreover, when T and other 
parameters are fixed, J will be increased if malicious worker 
fraction m is increased or the replication probability r is 
decreased. For example, when T is 50 and r is 0.5, J 
increases from near 0 to 0.06 when m increases from 0.5 to 
1.0; when T is 50 and m is 1.0, J increases from 0.06 to 0.15 
when r drops from 0.5 to 0.3. 
Figure 5(b) shows the relationship between cheat probability 
c and job error rate J with fixed T and v. According to the 
simulation, when T is 50, r is 0.5, and m is 0.5, the 
maximum J an adversary can achieve is less than 0.01. 
When m is 1.0, setting r as 0.5 can limit J to less than 0.09. 
The simulation also shows an interesting tradeoff between c 

and J: if c is too big, the malicious worker would be 
detected easily and thus its injected errors are rejected, 
resulting in a smaller J; if c is too small, the number of 
injected errors is reduced, also resulting in a smaller J. 

Figure 5(c) shows the relationship between c and J when 
T is 600, v is 0.07, and r is 0.16. With this configuration, 
even under the most extreme case where m is 1.0, the 
maximum J the adversary can achieve is less than 0.06; 
when m is no larger than 0.5, the maximum J is close to 0.  

Figure 5(d) shows the relationship between cheat 
probability c and survival length L when T is 50 and v is 
0.15. We can see that L is generally very small when c is 
bigger than 0.02, which means that a malicious worker 
cannot survive CCMR checks for a very long time. Our 
experiment in Section 5.1 and Figure 6 confirms this 
observation. However, L increases exponentially when c 
decreases from 0.02 to 0, which suggests that CCMR cannot 
remove very low-profile malicious workers (those that 
rarely cheat) quickly, but since such workers inject very few 
errors at the same time, CCMR can still guarantee very low 
job error rate in that case.  

Figure 5(e) shows the tradeoff between job error rate J 
and overhead O, and Figure 5(f) shows the tradeoff between 
job error rate J and verifier overhead V, given different 
credit threshold T. For each curve in the figures, the top-left 
most point corresponds to the setting where T is 0, and the 
bottom-right most point corresponds to the case where T is 
600. The difference of T values between adjacent points on 
each curve is 50. The figures show that when T is small 
(e.g., 50), a higher value of r results in a lower job error rate 
and higher overhead and verifier overhead. When T is big 
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Figure 5. Simulation of CCMR Analysis Model 
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enough (e.g., greater than 200), different values of r do not 
make much difference in job error rate. However, a smaller 
value of r would bring a smaller overhead and verifier 
overhead limit. We find that on each curve, the points 
become denser with the increase of T and eventually 
concentrate to their outmost limits. This suggests that when 
T is big enough (e.g., bigger than 200), increasing T further 
would bring neither additional accuracy benefit, nor 
additional overhead or verifier overhead cost. 

We should point out that Theorem 1 assumes that 
malicious worker fraction m is constant, i.e., detected 
malicious workers are not eliminated. However, in our real 
implementation, detected malicious workers are eliminated, 
which will cause fewer errors. As a result, task/sub-task 
reschedule will be reduced, and eventually the overhead and 
verifier overhead should be lower than the simulation result. 

 
4.4 COMMUNICATION	COST	ANALYSIS	

In order to reduce the cross-cloud communication cost, 
we only deploy DFS nodes on the public cloud. Such a 
deployment avoids DFS data synchronization across clouds. 
In addition, it reduces the cross-cloud communication 
incurred by MapReduce tasks. Since each mapper fetches 
input from DFS and stores task output to its local storage, 
the only major cross-cloud communication in the map phase 
happens when a verification task fetches input data from the 
DFS. Since each reducer fetches input from the mappers’ 
local storage, and only the original reduce task writes its 
output to the DFS (According to Section 3.1), the only 
major cross-cloud communication in the reduce phase 
happens when a verification reduce task fetches input data 
from mappers on the public cloud. Since the number of 
map/reduce verification tasks is usually very small 
compared to the number of original and replication task, 
such cross-cloud communication is not significant. 

Other sources of cross-cloud communication includes 
task scheduling instructions from the master to workers and 
the task results (hash value) returned from workers to the 
master. However, network traffic caused by such 
communication messages is not significant due to their 
small sizes (e.g., a hash value of a task result contains only a 
few bytes). 

 

5. EXPERIMENTAL	RESULT	
We implement a prototype system based on Hadoop 

MapReduce and deploy it across our private cloud and 
Amazon EC2. The experiment environment consists of the 
following entities: a Linux server (2.93 GHz, 8-core Intel 
Xeon CPU and16 GB of RAM) is deployed on a private 
cloud, running both the master and the verifier. Twelve 
Amazon EC2 micro instances are running as slave workers 
(Amazon Linux AMI 32-bit, 613 MB memory, Shared 
ECU, Low I/O performance).  

We perform experiments on map and reduce phase 
separately to measure the job error rate, overhead, verifier 

overhead, and performance overhead. To compare the 
performance overhead, we set the baseline as a standard 
MapReduce cluster consisting of thirteen nodes deployed on 
Amazon EC2. Each node is a micro instance. Out of the 13 
nodes, one is running as the master, and the other 12 nodes 
running as workers. 

 
5.1 MAP	PHASE		

We measure job error rate, overhead and verifier 
overhead of CCMR by running a word count MapReduce 
job (Section 3.3) in an environment with malicious 
MapReduce workers. We simulate such malicious workers 
by implementing the adversary’s strategy described in 
Section 4.1. The word count job consists of 800 map tasks 
and one reduce task. We fix T and v and vary other 
parameters with different value combinations.  

The experiment result in Table 2 indicates that in all 
parameter combinations, CCMR can keep a very low job 
error rate. Overall, the maximum job error rate is 2.25% and 
the minimum is 0. The changing trend of experiment result 
is consistent with the simulation result in Section 4.3. For 
example, when m and c are fixed (m is 0.167 and c is 0.1), 
job error rate drops from 0.48% to 0 when r increases from 
0.3 to 1.0. When m and r are fixed (m is 0.5 and r is 1.0), the 
job error rate drops from 0.14% to 0 when c increases from 
0.1 to 1.0. On the other hand, a higher value of r incurs a 
higher overhead and verifier overhead. For example, when r 
is 1.0, the average overhead is 112%, and when r is 0.3, the 
average overhead is 41%. We note that the experiment 
overhead and verifier overhead is lower than the simulation 
result in Figure 5(e) and (f), respectively. This fact confirms 
our prediction in Section 4.3: Since Theorem 1 assumes m 
as a constant value, its estimation of overhead and verifier 
overhead should be higher than the experiment result. 

We observe that in each of the 18 parameter 
combinations, CCMR is able to eliminate all malicious 
workers during the execution of the word count job. In 
Figure 6, we show three representative combinations in 
terms of how soon each malicious worker is detected and 
thus removed. We could see that under the first two 
combinations, CCMR can remove all malicious workers 
very quickly (within less than 15% of the total job execution 
time). Under the third combination, the malicious workers 
are very stealthy (cheat with a probability of 10%) and the 
replication frequency is low (30%), but CCMR can still 
remove all six malicious workers before 50% of the job has 
finished. Such observations suggest that CCMR is effective 

 

 
Figure 6. Malicious Worker Elimination Progress 
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System 
Setting 

T=50, v=0.15 

m 0.5  0.167 
c 0.1 0.5 1.0 0.1 0.5 1.0 

r 0.3 0.5 1.0 0.3 0.5 1.0 0.3 0.5 1.0 0.3 0.5 1.0 0.3 0.5 1.0 0.3 0.5 1.0 
Jmap (%) 1.31 0.58 0.14 1.08 0.28 0.05 2.25 0.76 0.0 0.48 0.04 0.0 0.19 0.45 0.02 0.11 0.0 0.0 
Omap (%) 46.3 66.3 126.7 47.5 70.1 122.6 51.4 74.6 118.8 33.6 53.7 100.6 32.8 51.5 103.6 34.9 53.5 103.6
Vmap (%) 4.9 8.3 18.1 6.3 11.5 21.5 9.5 15.4 24.5 4.7 7.8 15.8 4.6 7.3 15.1 10.4 8.5 16.9 

Table 2 Accuracy and Overhead of Wordcount Application with Map Phase Integrity Check  
 

Configuration Baseline v=0.15, T=50 
r=0.3 r=0.5 r=1.0 

Running time(s) 1728 2069 2323 3167 
Extra running time (%) --- 19.75 34.41 83.26 

Table 3 Performance of Map Phase Integrity Check 
 

Application Job 
No. 

Baseline CCMR without request bucketing CCMR with request bucketing 
Exec. 
time 
 (s) 

Exec. 
time 
(s) 

Delay 
(%) 

Repl. 
Task 
Num. 

Veri. 
Task 
Num. 

Exec. 
 time 

(s) 

Delay 
(%) 

Repl.  
Task 
Num. 

Veri. 
Task 
Num. 

Word Count 1 979 1398 43% 88 6 1263 29% 9 1 
20 News Letters 1 517 983 90% 95 7 636 23% 10 1 

2 331 482 45% 108 8 465 40% 11 1
3 210 221 5% 80 6 260 23% 8 1 
4 85 63 -25% 0 1 57 -32% 0 1 
5 161 143 -11% 0 1 138 -14% 0 1 

Ave. Delay (%)*  ---- 46% 29% 
* Average delay does not count the direct verification job (i.e., job 4 and 5 in the 20 news letters application).  

Table 4 Performance of Reduce Phase Integrity Check 
in detecting malicious workers even if the adversary 
implements its best strategy.  

We also measure the execution time delay introduced by 
CCMR in the map phase by running the same 800-map task 
word count job. Since here our focus is map phase delay, we 
disable the reduce phase integrity check. We also disable the 
combine phase. In addition, we do not introduce malicious 
workers. The reason is that we believe the customer is 
willing to pay extra cost to detect malicious workers. 
However, they are reluctant to spend extra money for 
CCMR when there are no malicious workers. The 
experiment result is shown in Table 3. It indicates that the 
extra running time compared to the base-line grows with r. 
When r grows from 0.3 to 1.0, the extra running time grows 
from 19.75% to 83.26%. 
 
5.2 REDUCE	PHASE	

To measure the reduce phase, we set the replication 
probability r as 0.16, the verification probability v as 0.07, 
and the credit threshold T as 600. We set both the 
replication and verification bucket size B as 10 when 
applying request bucketing technique. 

Our accuracy test shows that such a configuration 
guarantees 0 job error rate when m is 0.5 and c changes 

among 0.1, 0.5 and 1.0, which is consistent with our 
simulation in Figure 5 (c). Given the space limit, we only 
present the performance experiment result in this section. 
We use two applications to measure the performance 
overhead of reduce phase integrity check: word count and 
mahout twenty newsgroups classification (The Apache 
Software Foundation, n.d.). For a similar reason as the map 
phase, we introduce neither map integrity check nor 
malicious nodes in this performance test.  

 
To measure the performance gain from the request 

bucketing technique, we perform two sets of experiments: 
the one without using the request bucketing technique and 
the one using such technique. The experiment result is 
shown in Table 4. The word count job is the same job 
described in Section 5.1, which consists of 800 map tasks 
and one reduce task. We compare the running time of 
CCMR with baseline. On average, CCMR without request 
bucketing takes 1,398 seconds to finish the job. It produces 
88 replication reduce tasks and six verification reduce tasks. 
Compared with the standard MapReduce, which takes 979 
seconds to finish the same job (we enable the combine 
phase to accelerate the execution), the execution delay is 
43%. When we apply the request bucketing to the reduce 
phase, the number of replication and verification tasks drops 
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to nine and one, respectively; the execution time is reduced 
to 1,263 seconds and the execution delay is reduced to 29%. 
We attribute the reduced execution delay to the reduction of 
number of replication/verification tasks.  

We also run the Mahout twenty newsgroups 
classification example on CCMR. This application consists 
of five jobs. Each of the first three jobs produces more than 
100,000 keys. Hence, CCMR sets the credit threshold T to 
600. The last two jobs produce less than 600 keys, so 
CCMR directly generates a verification reduce task for each 
job. The total execution time under CCMR without request 
bucketing is 1,892 seconds. Compared to 1,304 seconds on 
the baseline, the execution delay is 45%. When applying 
request bucketing, the execution time is reduced to 1,556 
seconds. The execution delay is reduced to 19%. It is 
interesting to notice that the CCMR execution times of the 
last two jobs are shorter than the baseline. This is because 
the master in CCMR is executed on the private cloud, which 
has more computation power than a micro instance on the 
public cloud. When evaluating the average slow down 
incurred by CCMR, we exclude these two special jobs. 

Overall, request bucketing plays an important role in 
boosting the performance. Based on the execution time of 
word count and the first three jobs of 20 newsletters 
applications, the average execution delay of CCMR without 
request bucketing is 46%. When request bucketing is 
applied, the average execution delay is reduced to 29%.  

 

6. RELATED	WORK	
Several existing solutions have been proposed using 

replication sampling, and verification techniques to address 
result integrity problems in other distributed environments 
such as P2P Systems and Grid Computing. Golle et al. 
(Golle & Stubblebine, 2002) propose to guarantee 
correctness of the distributed computation result by 
duplicating computations. Zhao et al. (Zhao, Lo, & Dickey, 
2005) proposed a sampling based idea of inserting 
indistinguishable Quizzes to the task package, which is 
going to be executed by the untrusted worker and verify the 
returned result for those Quizzes. Their simulation result 
shows by combining reputation system, Quiz approach 
gains higher accuracy and lower overhead than replication-
based approach. However, suggested by their simulation, 
the reputation accumulation is a long-term process so that in 
order to accumulate reliable reputation, it takes as many as 
105 tasks. Du et al.  (Du, Jia, Mangal, & Murugesan, 2004) 
proposed to insert several sampled tasks to the task package, 
and check the sampled task returns using Merkle-tree based 
commitment technique. The analysis in the paper showed 
that in order to detect error from a malicious worker who 
cheats with low probability such as 0.1, it takes more than 
75 samples to be inserted to each worker. 

For MapReduce, Wei et al. (Wei, Du, Yu, & Gu, 2009) 
proposed an integrity assurance framework SecureMR to 
enforce the commitment protocol and the verification 

protocol. SecureMR employs task duplication to defeat 
collusive workers. The design difference from our paper is 
that the number of duplication task for each original task is 
non-deterministic. Such an approach guarantees 90% of 
detection rate in defeating periodical collusive attacker with 
40% of duplication rate when the malicious worker fraction 
is below 0.15 and malicious cheat probability is 0.5. 
(According to (2) in (Wei, Du, Yu, & Gu, 2009)) However, 
(2) in (Wei, Du, Yu, & Gu, 2009) also shows that when 
malicious worker fraction is 0.5, malicious cheat probability 
is 0.1, 40% of duplication rate can achieve only 25% of 
detection rate. The maximum detection rate SecureMR can 
achieve under this environment setting is 80%, with a 
duplication rate more than 500%. Wang et al. (Wang & 
Wei, 2011) proposed the VIAF framework that uses full 
replication and non-deterministic verification. Such 
approach eliminates all non-collusive workers and removes 
collusive worker with certain probability. However, their 
work does not consider practical factors when deployed on a 
real cloud, such as cross-cloud communication. In addition, 
both above works cannot handle the case where the reduce 
task number is very small (e.g. only one reduce task). This 
paper is extended from the conference paper (Wang, Wei, & 
Srivatsa, 2013). Based on the original CCMR design, we 
improve the reduce phase performance by proposing request 
bucketing techniques. Our experiment result shows that the 
request bucketing technique reduces the average execution 
delay from 46% to 29%. 

 

7. CONCLUSION	
We propose a novel framework, CCMR, which overlays 

MapReduce on top of a hybrid cloud to offer high result 
integrity. Based on such framework, we propose the result 
integrity check scheme in order to boost the accuracy 
meanwhile to reduce the delay. Our theoretical analysis and 
experimental result suggests that CCMR can achieve low 
job error rate while introducing non-negligible performance 
overhead. 
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9. APPENDIX	
Proof of Theorem 1: 

Sn, the probability of a malicious mapper/reducer to 
survive after executing n original tasks/sub-tasks is the 
probability summation of all permutations on n independent 
events. Each event should fall into one of the below three 
cases. 
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1). The worker does not cheat. The probability in this 
case is (1-c); 

2). The worker cheats, but the task/sub-task is not 
replicated. The probability in this case is c(1-r); 

3). The worker cheats, and the task is replicated. 
However, the other worker executing the replication 
task/sub-task can collude with it. When the consistent 
results are returned to master, the verification task is not 
invoked. The probability in this case is crm(1-v). 

Condition1 Condition 2, given 
condition 1 is satisfied 

Condition 3, given condition 2 is satisfied Category 
Number 

The task/ sub-task t is 
assigned to a malicious 
worker z, which 
survived in the current 
batch  

-- t is not replicated.
1

t is replicated, but z does not cheat.
2

t is replicated but not verified. z cheats. But the replication task/sub-task is executed 
by another malicious worker. 3

The task/ sub-task t is 
assigned to a malicious 
worker z, which does 
not survive in the 
current batch 

t is not the last task/sub-
task in the current 
batch(i.e., t is the one 
being detected) 

t is not replicated. 
4

t is replicated. z does not cheat. The results are not verified.
5

t is replicated. z cheats. The error is not detected.
6

t is replicated. z does not cheat. The results are verified.
7

t is the last task/sub-task 
in the current batch (i.e., 
the one being detected). 

-- 
8

The task/ sub-task t is 
assigned to a benign 
worker z. 

t is replicated. The corresponding replication task is assigned to a malicious worker. The malicious 
worker cheats. 

9

The corresponding replication task returns the same result as the original one. 10

t is not replicated -- 11

Table 5 Categories of Tasks based on Assignment Conditions. 
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Table 6 Probability, Workload and Verifier Overhead of Each Category 
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By summing up the probability of different 
permutations of above three cases on n independent 
events, we have 
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 Setting n=T, we have ST, the probability that a 
malicious mapper/reducer submit a batch of task/sub-task 
to a master. The probability of each malicious worker can 
submit exactly k batches (i.e., not detected in first k 
batches, but detected on the (k+1)th batch) is

 )1()( T
k

T SS   

The expected number of batches a malicious worker 
can submit (survival length) is therefore.  
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In a batch with credit threshold T, The probability that 
exactly k out of T tasks return erroneous results but are 
not detected is as follows. It consists of (T-k) events that 
the worker does not cheat, and k events that the worker 
cheats but without detection.  
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The expected number of tasks returning erroneous 
results in a batch (batch error number) is therefore  
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The batch error rate by definition is therefore  
TEe /                                                                (4)    

Since the assignment of tasks/sub-tasks on the public 
cloud is uniformly distributed on all workers. And the 
detected malicious workers are not added to the black list, 
we can assume ratio m of workers on the public cloud 
submit erroneous results to the master, the batch error rate 
for those erroneous results is e. We have total error rate in 
a job (job error rate) is  

mememJ  0*)1(*                                 (5) 

In order to calculate the overhead and the verifier 
overhead, we divide the original tasks/sub-tasks into 11 
different categories based on different conditions the 
task/sub-task may encounter, as shown in Table 5. We 
summarize the probability, workload and verifier 
overhead of each category in Table 6. Here we define 
workload as the number of executions each task/sub-task 
has to run on the public cloud, marked as W. It includes 
the original task/sub-task execution and the task/sub-task 
overhead. Therefore, we have OW 1 , where 1 
corresponds to the original task/sub-task and O 
corresponds to the overhead.  

Since the categories summarized in Table 5 are mutual 
exclusive and exhaustive, we have 

1
11

1


i

iP
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We calculate 

the expected workload by combining the probability and 
workload under each category. 
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We calculate the expected verifier overhead by 
combining the probability and verifier overhead under 
each category. 
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By reorganizing the formula and replacing Pi with the 
value in Table 6, we have, 
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