
0

Florida International University Technical Report TR‐2012‐SEC‐03‐01

KQguard: Protecting Kernel Callback Queues

Jinpeng Wei1, Feng Zhu1, Calton Pu2

1School of Computing and Information Sciences
Florida International University

Miami, FL 33199

{weijp, fzhu001}@cs.fiu.edu

2College of Computing
Georgia Institute of Technology

Atlanta, GA 30332

calton@cc.gatech.edu

1

KQguard: Protecting Kernel Callback Queues
Jinpeng Wei, Feng Zhu, Calton Pu

ABSTRACT
Kernel callback queues (KQs) are the mechanism of choice for
handling events in modern kernels. KQs have been misused by
real-world malware to get a kernel thread to run malicious code.
Current defense mechanisms for kernel code and data integrity
have difficulties with KQ attacks, since they work without neces-
sarily changing legitimate kernel code or data. In this paper, we
describe the design, implementation, and evaluation of KQguard,
an efficient and effective protection mechanism of KQs. KQguard
uses static and dynamic analysis of kernel and device drivers to
learn the legitimate event handlers. At runtime, KQguard rejects
all the unknown KQ requests that cannot be validated. We im-
plemented KQguard on Windows Research Kernel (WRK) and
extensive experimental evaluation shows KQguard is efficient (up
to 5% overhead) and effective (capable of achieving zero false
positives and false negatives against 11 real malware and 9 syn-
thetic attacks). KQguard protects all the 20 KQs in WRK, can be
extended to accommodate new device drivers, and through dy-
namic analysis can support closed source device drivers.

1. INTRODUCTION
One of the most time-critical functions of an operating system
(OS) kernel is interrupt/event handling, e.g., timer interrupts. In
support of asynchronous event handling, multi-threads kernels
store the information necessary for handling an event as an ele-
ment in a kernel queue (called KQ for short), specialized for that
event type. To avoid interpretation overhead, each element of a
KQ contains a callback function pointer to an event handler spe-
cialized for that specific event, plus its associated execution con-
text and input parameters. When an event happens, a kernel
thread invokes the specified callback function as a subroutine to
handle the event.

KQs are the mechanism of choice for handling events in modern
kernels. As concrete examples, we found 20 KQs in the Windows
Research Kernel (WRK) and 22 in Linux. In addition to being
popular with kernel programmers, KQs also have become a very
useful tool for kernel-level rootkits (Section 5.2 and [5][21]),
malicious programs that remain hidden in the kernel to execute
kernel tasks ordered by an attacker. For example, the Push-
do/Cutwail spam bot has misused the Registry Operation Notifi-
cation Queue of the Windows kernel to monitor, block, or modify
legitimate registry operations [8]. This paper includes 11 exam-
ples of real world rootkits misusing KQs demonstrating these
serious current exploits, and 9 additional synthetic potential mi-
suses for illustration of future dangers.

To counter these threats, one potential solution is to consider the
KQs as bugs as typical exploits of kernel bugs today, and try to
fix them. Since the rootkits are only exploiting legitimate APIs of
KQs, the only way to fix this bug is to remove KQs themselves.
This drastic solution would require significant and extensive ker-
nel redesign and it is currently impractical. Instead, we consider
KQs as important kernel features that we would like to keep. Our
defense, called KQguard, performs validation checks that will
ensure the execution of legitimate event handlers only, by filter-
ing out all the callbacks of unknown origin.

KQguard is carefully designed and implemented to satisfy four
stringent requirements of kernel facilities. The first two are func-
tional software requirements, while the last two are practical
adoption requirements. The first requirement is efficiency: KQ-
guard should minimize the overhead of callback function valida-
tion. The second is effectiveness: KQguard should distinguish
attack KQ requests from legitimate event handlers with zero er-
rors. The third is coverage: KQguard should work for all the KQs
in the kernel. The fourth is extensibility: KQguard should support
future legitimate event handlers such as device drivers. The fifth
is inclusiveness: KQguard should work without source code in
order to support third-party, closed source device drivers. A sur-
vey of potential solutions for addressing the KQ exploits is in-
cluded in Section 6, where we explain our findings that current
solutions have difficulties with one or more of the four require-
ments.

The main contribution of this paper is the design, implementation,
and evaluation of KQguard. By combining several techniques
(e.g., static analysis of kernel source code and dynamic analysis
of device driver binaries), KQguard is able to satisfy the design
requirements of efficiency, effectiveness, coverage, extensibility,
and inclusiveness. We have implemented the KQguard in WRK
[33] and started work on the Linux kernel. Extensive evaluation
of KQguard on WRK shows its effectiveness against KQ exploits
(both real and synthetic), detecting all the attacks (zero false
negatives). With appropriate training, we eliminated all false
alarms from KQguard (zero false positives) for representative
workloads. For resource intensive benchmarks, KQguard carries a
small performance overhead of up to 5%. The ongoing implemen-
tation effort on Linux confirms our experience on WRK. KQ-
guard protects all 20 KQs in WRK; it can be extended to accom-
modate new device drivers, and it supports closed source device
drivers through dynamic analysis.

The rest of the paper is organized as follows. Section 2 summariz-
es the problem caused by rootkits misusing KQs. Section 3 de-
scribes the high level design of KQguard defense by abstracting
the KQ facility. Section 4 outlines some implementation details of
KQguard for WRK and Linux, validating the design. Section 5
presents the results of an experimental evaluation, demonstrating
the effectiveness and efficiency of KQguard. Section 6 outlines
related work and Section 7 concludes the paper.

2. PROBLEM ANALYSIS: KQ Hijack

2.1 Importance of KQ Hijack Attacks
Functionally, KQs are kernel queues that support the callback of a
programmer-defined event handler, specialized for efficient han-
dling of that particular event. For example, the soft timer queue of
the Linux kernel supports scheduling of timed event-handling
functions. The original kernel thread requesting the timed event
specifies an event time and a callback function to be executed at
the specified time. When the system timer reaches the specified
time, the kernel timer interrupt handler invokes the callback func-
tion stored in the soft timer request queue (Figure 1). More gener-
ally and regardless of the specific event semantics among the
KQs, their control flow conforms to the same abstract type: For

2

each request in the queue, a kernel thread invokes the callback
function specified in the KQ request to handle the event.

Figure 1: Life cycle of a soft timer request in Linux
Kernel-level rootkits exploit the KQ callback control flow to ex-
ecute malicious code by inserting their own request into a KQ
(e.g., by supplying malicious callback function or data in step 1 of
Figure 1). This kind of manipulation, called a KQ hijack attack,
only uses legitimate kernel API and it does not change legitimate
kernel code or statically allocated data structures such as global
variables. Therefore, syntactically a KQ hijack request is indistin-
guishable from normal event handlers. Consider the Registry
Operation Notification Queue as illustration. Using it in defense,
anti-virus software event handlers can detect potential intruder
malicious activity on the registry. Using it in KQ hijack attack,
Pushdo/Cutwail [8] can monitor, block, or modify legitimate regi-
stry operations.

Several KQ Hijack Attacks by real world malware have been
documented. First, rootkits have misused KQs to hide better
against discovery. For example, the Rustock.C spam bot relies on
two Windows kernel timers [17] to check whether it is being de-
bugged/traced [2][15] (e.g., whether KdDebuggerEnabled is true).
Second, rootkits have misused normal KQ functionality for covert
rootkit operations. For example, Pushdo/Cutwail botnet sets up
three callback routines by invoking
IoRegisterFsRegistrationChange, CmRegister
Callback, and PsSetCreateProcessNotifyRoutine,
respectively [8]; these callback routines enable it to monitor file
system registrations, monitor, block, or modify a registry opera-
tion, and inject a malicious module into a services.exe process.
Rustock.C also invokes PsSetCreateProcessNotify
Routine [7][23] to inject code into seemingly benign processes
(e.g., sevices.exe) so that spamming can be done in the context of
an innocent process. Third, rootkits have misused KQ functionali-
ty to attack security products directly. For example, the
Storm/Peacomm spam bot invokes PsSetLoadImageNotify
Routine to register a malicious callback function that disables
security products when they are loaded [4]. Table 3 shows the KQ
hijack attacks against WRK that we have studied. It is a repre-
sentative sample, covering some of the most notorious malware
today: the TDSS botnet consists of 4.5 million infected machines
and is considered the most sophisticated threat [11], and Duqu
[12] is believed to be closely related to the widespread Stuxnet
worm [29]. Undoubtedly, KQ Hijack Attacks represent a clear
and present danger to current OS kernels.

2.2 KQ Hijack Attack Model
The KQ hijack malware listed in Table 3 misuse KQs in a
straightforward way. They prepare a malicious function in kernel
space and use its address as the callback function pointer in a KQ
request. We call these callback-into-malware attacks. Since their

malicious functions must be injected somewhere in kernel space,
callback-into-malware attacks can be detected by runtime kernel
code integrity checkers such as SecVisor [25] or NICKLE [24].
Callback-into-malware is considered the basic level of attack,
which may be countered by current defense techniques.

Unfortunately, sophisticated attack technology already developed
is able to bypass the detection of standalone malware, e.g., “re-
turn-into-libc” attacks [27][30] that use snippets of legitimate
kernel code to achieve their malicious intent. The second level of
KQ hijack attacks, called callback-into-libc (in analogy to return-
into-libc), create a malicious callback request containing a legiti-
mate event handler, but invoked with malicious input parameters.
When activated, the event handler may carry out unintended ac-
tions on behalf of the attacker.

Callback-into-libc KQ hijack attacks represent a new and interest-
ing challenge, since they allow an attacker to execute malicious
logic without injecting his own code. To demonstrate the feasi-
bility of callback-into-libc attacks, we developed a prototype KQ
hijack program that only uses legitimate kernel code to bypass
SELinux. In recent Linux kernels [26], SELinux has been imple-
mented as a Linux Security Module (LSM). SELinux registers its
security auditing functions through the register_security
facility, which fills a global variable called security_ops
with SELinux functions. Since there is a legitimate function
reset_security_ops that overwrites security_ops to
the initial value that points to another global data structure called
default_security_ops that does no security auditing, our
prototype KQ hijack program inserts a soft timer request with
reset_security_ops as the callback function. When this
soft timer expires, reset_security_ops is invoked and SE-
Linux is turned off.

The design of KQguard in the next section shows how we can
detect both the basic level (callback-into-malware) and the second
level (callback-into-libc) KQ hijack attacks.

2.3 Design Requirements in KQ Defense
An effective KQ defense should satisfy five requirements, i.e.,
efficiency, effectiveness, coverage, extensibility, and inclusive-
ness. In this section, we outline the reasons some previous tech-
niques may solve specific problems, but have difficulties with
satisfying all five requirements. At the same time, we outline the
reasons KQguard satisfies these requirements. A more detailed
discussion of related work is in Section 6.

Efficiency. Although some KQs have higher efficiency require-
ments than others (e.g., timer interrupts vs. registry operations), it
is important for KQ defenses to minimize their overhead. KQ-
guard is designed to protect all KQs (the coverage requirement)
with low overhead, including the time-sensitive ones.

Effectiveness. KQ defenses should detect all the KQ Hijack At-
tacks (zero false negatives) and make no mistakes regarding the
legitimate event handlers (zero false positives). KQguard is de-
signed to achieve this level of precision and recall by focusing on
the recognition of all legitimate event handlers.

Coverage. It is important for a KQ defense to protect all KQs, not
just the ones under past attacks. Although we do not rule out spe-
cialized solutions to protect individual KQs a priori, KQguard is
designed to protect all KQs that activate their requests by execut-
ing a callback function.

3

Extensibility. Due to the rapid proliferation of new devices, it is
important for kernel defenses to extend their coverage to protect
the new drivers. The KQguard design isolates the knowledge on
legitimate event handlers into a table (the EH-Signature Collec-
tion), which is easily extensible.

Inclusiveness. A practical concern of commercial kernels is the
protection of third-party, closed source device drivers. KQguard
uses static analysis when source code is available, and dynamic
analysis to protect the closed source legitimate drivers.

3. DESIGN OF KQGUARD
In this section, we describe the design of KQguard as a general
protection mechanism for the KQ abstract type. The concrete
implementations (WRK and Linux) are described in Section 4. In
the rest of the paper, we will refine our terminology slightly. We
will use the term “event handler” to denote legitimate KQ call-
back functions when the context is clear.

3.1 Assumptions and Architecture

3.1.1 Security Assumptions
We make the following assumptions about the underlying system:

(1) The core kernel and all legitimate device drivers main-
tain integrity in both their code and data against tamper-
ing by malware. This is a realistic assumption due to ex-
isting solutions that can protect/check the data integrity
of legitimate programs [3][6][14][16].

(2) KQguard code and data (EH-Signature Collection) are
similarly protected from tampering by any rootkits in-
stalled in the kernel.

(3) KQguard design assumes that detailed information
about loaded modules (e.g., name and address range) is
maintained by the kernel and accessible by KQguard.

Kernel source code availability is a more complex issue. KQguard
relies on static analysis of source code to find the KQs and the
event handlers associated with them. However, to satisfy the in-
clusiveness requirement KQguard should provide an alternative
solution for protecting device drivers for which source code is
unavailable. Thus we have an additional assumption:

(4) A representative and comprehensive workload is avail-
able for a training process to find all the legitimate KQ
event handlers (Section 3.3.4). During the training
process, we further assume the system is free of
rootkits.

A limitation of current KQguard implementation (Section 4) is
that the training process is run only once. Thus the runtime dy-
namic loading of legitimate device drivers is supported only par-
tially. Namely, new drivers that use known KQ event handlers
can be dynamically loaded with full protection. Acceptance of
new drivers that introduce new KQ callback functions (not seen
during training) is postponed to future work.

3.1.2 KQguard Architecture Overview
The main function of KQ defense is to decide at runtime whether
a callback function in a KQ request is a legitimate event handler
or a malicious KQ hijack attack. KQguard achieves this goal by
collecting all of the known event handlers into a table (called EH-

Signature Collection) and checking the callback function in ques-
tion against the EH-Signature Collection.
Although the checking decision is superficially similar to that of
anti-virus malware scanners, our approach is fundamentally dif-
ferent from, and complementary to, malware scanners. On the one
hand, the construction of signature-based malware scanners is
typically reactive: samples of malware are needed in order to
design their signatures. On the other hand, KQguard is proactive
by identifying the set of legitimate event handlers as a starting
point. Instead of assuming the unknown to be benign (malware
scanners), KQguard assumes the unknown to be a threat. Conse-
quently, KQguard focuses on the legitimate code and it is largely
independent of any concrete knowledge about the implementation
specifics of KQ hijack attacks.
KQguard uses a compact and “relocatable” representation of call-
back functions (the Callback-Signature, explained in Section 3.2)
for efficient and effective checking. In the following, we will
refer to the Callback-Signatures of known legitimate event han-
dlers as EH-Signatures. Under the assumption of full kernel
source code availability and without concern for inclusion of
closed source device drivers, we could use static analysis of the
entire source code (kernel + drivers) to find all the EH-Signatures.
However, this assumption is not always satisfied in practice.
To relax the full kernel source code availability assumption, we
adopt dynamic analysis. Figure 2 shows the two-phase KQguard
approach, based on dynamic analysis to satisfy the inclusiveness
requirement (which avoids the source code assumption). In the
first (training) phase, we collect all the legitimate EH-Signatures
used by the system into the EH-Signature Collection (Section
3.3). Under the assumption of training in a controlled environ-
ment free of rootkits, no malware callback-signature will be gen-
erated, so we can guarantee zero false negatives in the second
(guarding) phase. In addition, under the assumption of having a
representative and comprehensive workload, dynamic analysis
would also produce a complete EH-Signature Collection. Our
experimental evaluation shows that it is feasible to reduce the
false positives to zero and thus confirms the reasonableness of
workload assumption.
The actual validation of callback functions requires simple but
extensive kernel instrumentation. Conceptually, every KQ dis-
patcher needs to check every callback function invocation before
execution. Section 3.4 describes the non-trivial search for all the
locations of these simple changes. Concretely, we use static anal-
ysis of kernel code to find all the KQ dispatchers, which is anoth-
er necessary condition for zero false negatives.

Figure 2: Overall Architecture of KQguard

4

3.2 Callback-Signature Abstract Data Type
The central data structure of KQguard is the Callback-Signature,
an efficient and effective representation of callback functions for
checking. At an abstract level, the Callback-Signature of a KQ is
a symbolic pair (callback_function, callback_parameters). For
clarity, we use the term EH-Signature to denote known Callback-
Signatures of legitimate event handlers.

For different concrete types of KQ (e.g., timer_list in Figure 3),
the syntax and semantics of their Callback-Signatures may vary,
but their function is the same: to contain sufficient information to
identify a legitimate KQ request with a known callback function.
The two parts of Callback-Signature reflect the two attack modes
described in Section 2.2. The callback_function part of Callback-
Signature is used to protect the kernel against callback-into-
malware. Both callback-function and callback_parameters parts
are used to protect the kernel against callback-into-libc attacks.

To achieve efficient and effective checking, the Callback-
Signature from a KQ request is generated at runtime and matched
against the set of EH-Signatures generated in the training phase.
We describe first the callback-function part of the Callback-
Signature. The starting value is a physical address of an executa-
ble. Since a module’s physical addresses from different reboots
are unlikely to match, we perform a translation process that can
be called “de-linking”: it translates a linked callback function
pointer back into the location-independent “object code” format
prior to becoming linked into kernel memory. The callback-
function pointer is translated back into module name and then a
unique module ID, plus the displacement relative to the starting
point of its containing module (usually a device driver). Under the
assumption that the kernel maintains a uniform mapping of mod-
ule location to module ID (e.g., driver’s name), the pair (module
ID, displacement) becomes an invariant representation of the
callback-function pointer, suitable for KQguard checking.

The translation of the second part (callback_parameters) is more
involved, since it may contain up to three sub-types: actual val-
ues, global variables, and heap objects. Actual values are non-
pointer types such as integers, which require no translation. Glob-
al variables are pointers to kernel shared variables (Figure 4.a),
and they are translated to a pair (module ID, displacement) the
same way as the callback-function. Heap objects (Figure 4.b)
could have been translated similarly, if the mapping between a
heap object and its allocator is maintained by the kernel.

Since most kernels do not maintain the mapping between the re-
quester and its allocated heap objects, we add this mapping to
their heap allocator function (e.g., ExAllocatePoolWithTag
in WRK). Specifically, the extended heap allocator function
searches the call stack backwards until it reaches a return address
that falls within the code segment of a device driver; then such a
return address (after subtracting from it the starting address of the
device driver) becomes the displacement part of the heap object
representation. The extended heap allocator searches backwards

on the call stack instead of stopping at the immediate return ad-
dress because the immediate return address may be in some wrap-
per function for the heap allocation function (e.g., in WRK,
ExAllocatePoolWithTag is called by
ObpAllocateObject), and this kind of chained function call
can continue (see an example in Figure 5); a kernel device driver
can call a function at the top of the call chain to allocate a heap
object (for example, atapi.sys calls IoCreateDevice to
create a heap object).

In summary, the design goal of Callback-Signature is to support
an efficient and effective runtime determination of the legitimacy
of callback functions. The callback-function part detects callback-
intro-malware attacks while the callback-parameters part detects
callback-into-libc attacks.

Figure 4: Illustration of Different Origins of call-
back_parameters: (a) Global Variable; (b) Heap Variable

3.3 Building the EH-Signature Collection
3.3.1 Design Requirements
The next step in the construction of KQguard defense is to collect
the legitimate EH-Signatures. The set of all EH-Signatures forms
the EH-Signature Collection. The challenge of building the EH-
Signature Collection is to find the exact set of legitimate EH-
Signatures. In the process of distinguishing malware Callback-
Signatures from legitimate EH-Signatures, missing an EH-
Signature causes false positives, denying the execution of a legi-
timate KQ request. Worse yet, including a malware Callback-
Signature into the EH-Signature Collection causes false negatives,
allowing malware to execute.

Figure 5: Indirect Heap Object Allocation in a Call Stack
In an ideal kernel development environment, one could imagine
annotating the entire kernel and all device driver code to make
KQs explicit, e.g., by defining a KQ abstract type. Processing the
KQ annotations in the complete source code will give us the exact
EH-Signature Collection. There are several reasons this ideal
scenario is unlikely to happen. First, there are many third-party
closed source device drivers that are unlikely to share their source
code. Second, it is likely that human errors will be introduced in
the large number of lines of kernel code, currently on the order of
millions. Third, it is likely that most OS kernel builds will only
contain a small subset of all device drivers, making it unwieldy to
include all possible EH-Signatures in all systems.

Our design decision is to build software tools to automate the
process of obtaining a specialized EH-Signature Collection that
fits the configuration and usage of each system. In a training

struct timer_list {
 struct list_head list;
 unsigned long expires;
 unsigned long data;
 void (*function)(unsigned long);
};

Figure 3: The Definition of timer_list in Linux Kernel 2.4

5

phase, we run representative and comprehensive workloads. Un-
der the assumption that the training is done in a secure environ-
ment, we consider all the KQ requests made as legitimate and
include them into the EH-Signature Collection.

3.3.2 Constructing Callback-Signatures
The software tools used in the building of general Callback-
Signatures and EH-Signatures in particular are small extensions of
kernel facilities that manipulate KQs: KQ request creation, KQ
request initialization, and KQ request dispatch. These are APIs
provided by the core kernel for the device drivers. We extend
these kernel calls with a KQ request logging utility, which records
every KQ request mentioned in the legitimate kernel and device
drivers. This happens because during the training phase our goal
is to approach the complete coverage as much as possible.

Concrete examples of other useful kernel functions include device
driver loader functions, which are extended to log address range
information about loaded device drivers. They help us “de-link”
(Section 3.2) the physical address in the Callback-Signature and
map it back to its originating device driver. Similarly, the heap
allocation functions are extended to provide allocation ranges of
device driver requests of heap objects.

In general, the information contained in Callback-Signatures is
readily available in the kernel, although the precise location of
such information may differ from kernel to kernel. It is a matter of
identifying the appropriate location to instrument the kernel to
extract the necessary information. The extensions are applied to
the kernel at source code level. The instrumented kernel is then
rebuilt for the Callback-Signature collection process.

3.3.3 Automated Detection of KQs
Since every KQ can be exploited by malware, we need to build
the EH-Signatures for all of KQs. This is straightforward for
known KQs that have published APIs and source code as outlined
in Section 3.3.2. Under the hypothesis that a system software
provider can apply our method and tools to protect all KQs in a
kernel, we can claim the completeness of our proposed solution.

On the other hand, for the purposes of our research, it is still im-
portant to find out the KQs in a large kernel such as WRK and
Linux for several reasons. First, we need to evaluate the impor-
tance and potential impact of the KQ exploitation, which is re-
lated to the quantity and variety of KQs present in a kernel (the
attack surface). Second, we want to demonstrate the effectiveness
of KQguard for a realistic set of KQs. Third, by calling attention
of the research community to the named KQs, we may be able to
find additional KQ exploits that have not been identified so far.

Therefore, we designed and implemented a KQ discovery tool
that automates the process of finding KQs in a kernel by analyz-
ing its source code. Since kernel programmers are not intentional-
ly hiding KQs, they usually follow similar programming patterns
that our tool uses effectively:
- A KQ is typically implemented as a linked list or an array. In

addition to insert/delete, KQ has a dispatcher that operates on
the corresponding type.

- A KQ dispatcher usually contains a loop to act upon on all or a
subset of queue elements. For example, pm_send_all in Fig-
ure 7 contains the dispatcher loop for the Power Management
Notification queue of Linux kernel 2.4.32.

- A KQ dispatcher usually changes the kernel control flow, e.g.,
invoking a callback function contained in a queue element.

Based on the above analysis, the KQ discovery tool recognizes a
KQ in several steps. It starts by detecting a loop that iterates
through a candidate data structure. Then it checks whether a
queue element is derived and acted upon inside the loop. Next,
our tool marks the derived queue element as a taint source and
performs a flow-sensitive taint propagation through the rest of the
loop body; this part is flow-sensitive because it propagates taint
into downstream functions through parameters (e.g., dev passed
from pm_send_all to pm_send in Figure 7). During the prop-
agation, our tool checks whether any tainted function pointer is
invoked (e.g., dev->callback in pm_send in Figure 7), and
if that is the case, it reports a candidate KQ. Pseudo code of our
KQ discovery algorithm is shown in Figure 6. Due to space con-
straints we omit further details, but the results (e.g., KQs found in
WRK) are interesting and shown in Sections 4.1.2 and 4.2.2.

3.3.4 Dynamic Profiling to Collect EH-Signatures
Under the assumption of full kernel source code access, we can
generate the code for building the EH-Signature for all known
KQs. By finding all the KQ invocations, theoretically we will be
able to build corresponding EH-Signatures. Unfortunately, this
method requires the source code of third-party device drivers,
which often are unavailable.

Instead of relying on the full source code access assumption, we
chose to relax this assumption by adopting a practical method
based on dynamic profiling. We run a set of representative set of
benchmark applications using a comprehensive workload. We call
this process of collecting the EH-Signatures “training phase”,
since it is somewhat reminiscent of training a filter in machine
learning. During the training phase, the kernel extensions de-
scribed in Section 3.3.2 is triggered by every KQ request and
logged.

To avoid false negatives in KQguard, the training phase is per-
formed in a controlled environment (a clean and instrumented set
of kernel and device drivers) to ensure no malware Callback-
Signatures are included. To avoid false positives, the training
phase needs to be comprehensive enough to trigger all of the

For each function,
 For each while or for loop in that function,

For each assignment statement L = R_exp inside the loop,
 if R_exp satisfies either of the following conditions:

- it is an array element Ar[i] and Ar is a global array
with a non-primitive element type (e.g., a structure or a
function pointer),
- it is a type casting (T) rr_exp, T is a structure type
that has a link field (e.g., a pointer to its own type, or
LIST_ENTRY) and rr_exp contains a pointer arithmet-
ic operation,

then, (1) set L as a tainted variable and perform a transitive
taint analysis through the rest of the loop body; (2) if dur-
ing the taint analysis, some tainted function pointer is in-
voked, report the top-level data structure (e.g., Ar[] or
rr_exp) as a potential KQ.

Figure 6: KQ Detection Algorithm

6

/* linux-2.4.32/kernel/pm.c */
int pm_send_all (pm_request_t rqst, void *data)
{
 struct list_head *entry;
 entry = pm_devs.next;
 while (entry != &pm_devs) {
 struct pm_dev *dev = list_entry(entry,
struct pm_dev, entry);
 if (dev->callback) {
 int status = pm_send(dev, rqst, data);
 ……
 }
 entry = entry->next;
 }
 ……
 return 0;
}

struct pm_dev
{ pm_dev_t type;
 unsigned long id;
 pm_callback callback;
 ……
 struct list_head entry;
};

/* linux-2.4.32/kernel/pm.c */

static LIST_HEAD(pm_devs);
struct pm_dev *pm_register(pm_dev_t
type, unsigned long id, pm_callback call-
back)
{
 struct pm_dev *dev = kmalloc (sizeof
(struct pm_dev), GFP_KERNEL);
 if (dev) {
 memset(dev, 0, sizeof(*dev));
 dev->type = type;
 dev->id = id;
 dev->callback = callback;
 list_add(&dev->entry,
&pm_devs);
 }
 return dev;
}

/* linux-2.4.32/kernel/pm.c */
int pm_send(struct pm_dev *dev,
pm_request_t rqst, void *data)
{ ……
 if (prev_state != next_state){
……
 status = (*dev->callback) (dev,
rqst, data);
 ……
 } ……
}

Figure 7: Details of the Power Management Notification Queue on Linux Kernel 2.4.32
legitimate KQ requests. In practice, we expect an OS software
vendor (e.g., Microsoft), a capable system software reseller (e.g.,
Red Hat), or a reputable software validator (e.g., a software secu-
rity company) to perform the training phase, which is similar to
(and uses the same tools of) the comprehensive testing before a
release. As in all software testing, missing some execution paths
may introduce false positives when a previously unseen Callback-
Signature is triggered during runtime. We note that our coverage
requirements are significantly less than software correctness test-
ing, since we only need to trigger each execution path that in-
vokes a KQ request once, not the entire input space.

In our experiments, we approximate the software validation
process in two ways. First, we choose a representative set of
benchmark programs (e.g., PerformanceTest, Super PI, and
Iozone). Second, in addition to the test input, we also run the in-
strumented kernel during normal usage, including rebooting the
OS. Our evaluation (Section 5) shows a very low false positive
rate, indicating the feasibility of the dynamic profiling method. In
general, the issue of test coverage for large scale software without
source code is a significant challenge and beyond the scope of this
paper.

3.4 Validation Using EH-Signature Collection
We modify the dispatcher of every identified KQ so that the dis-
patcher checks the legitimacy of a pending KQ request before
invoking the call back function. To perform the check, the dis-
patcher first build the Callback-Signature from a pending request,
and then matches the Callback-Signature against the EH-
Signature Collection (the complete list of legitimate event han-
dlers, see Section 3.3). If a match is found, the dispatcher invokes
the confirmed event handler. Otherwise, the dispatcher takes ne-
cessary actions against the potential threat (e.g., generating a
warning message).

The construction of the KQ request’s Callback-Signature follows
the same algorithm as the construction of EH-Signatures (Section
3.3.2), including the de-linking of callback-function and the anal-
ysis of callback-parameters by sub-type (integer values, global
variables, and heap objects).

4. IMPLEMENTATIONS OF KQGUARD
4.1 WRK Implementation of KQguard
The KQguard design (Section 3) was implemented on the WRK.
Our implementation consists of about 2,300 lines of C code and
2,003 lines of Objective Caml code.

4.1.1 Construction of Callback-Signatures in WRK
In order to collect the Callback-Signatures for the 20 KQs in the
WRK, we instrumented the kernel in two sets of functions. First,
we studied and modified the functions that manipulate the KQs
directly. Second, we studied and modified auxiliary functions that
contribute with useful information in the construction of Call-
back-Signatures.

The main functions that manipulate KQs include the functions
that initialize KQ requests, insert KQ requests, and dispatch KQ
requests. These functions have direct access to KQ request data
structures and can provide both the callback-function and call-
back-parameters parts of a Callback-Signature. For both EH-
Signature collection in the training phase and for Callback-
Signature validation in the testing phase, we instrument every KQ
manipulation function. This is because sometimes a KQ request
can be removed before the dispatching (e.g., a timer request can
be cancelled). In total, our instrumentation of the KQ functions
consists of 500 lines of C code in WRK. The specific KQ dispatch
functions instrumented are list in Table 2, and the specific KQ
request insertion functions instrumented can be found in Table 9
in the Appendix.

As explained in Section 3.3.2, the construction of a Callback-
Signature involves the de-linking of callback-function address and
global variables, and the identification of heap objects. The de-
linking follows the algorithm outlined in Section3.2. The analysis
of heap objects is somewhat specific to WRK. It starts from the
instrumentation of heap allocation and deallocation functions,
which in WRK include ExAllocatePoolWithTag and Ex-
FreePool. Our instrumentation maintains a table of tuples <ad-
dress, length, driver ID, call site>, where address and length are
the starting address and length of an allocated heap memory block
at runtime, and the driver ID and call site identify the requester or
“owner” of the heap memory block. When a heap memory block

7

is allocated, a new entry is inserted into this table. Symmetrically,
the instrumented deallocation function removes the entry with key
<address>. The driver ID is derived from a search of the call stack
backwards until it reaches a return address that falls within the
code segment of a device driver. The return address is de-linked
(subtracting from it the starting address of the device driver),
becoming the call site part of the tuple for the heap object. The
call stack walk resolves chained function calls (Figure 5). Our
instrumentation of the heap allocator / deallocator consists of 600
lines of C code in total.

4.1.2 Automated Detection of KQs for the WRK
As explained in Section 3.1, we alleviate the assumption of full
kernel source code availability through a combination of static
analysis to find the KQs and dynamic analysis to build the EH-
Signature Collection. We implemented the KQ discovery tool for
WRK using the C Intermediate Language (CIL) [19]. Our imple-
mentation consists of 2,003 lines of Objective Caml code.

We applied the KQ discovery tool to the WRK source code
(665,950 lines of C) and 20 KQs were detected with 16 distinct
KQ data structure types (some KQs share a common type, e.g.,
Process Creation/Deletion Notification queue and Thread Crea-
tion/Deletion Notification queue). Due to space constraints, we
list a few representative KQs in Table 1, and the full list in Table
9 of the Appendix. Most of these KQs are implemented as linked
lists (such as the I/O timer queue), but a few of them are imple-
mented as arrays (e.g., the Process Creation/Deletion Notification
queue). A majority of these KQs (15 out of 20) have a global
variable as their queue head. For each KQ, we report the number
of callback-parameters that are included in the Callback-Signature
(in the “# param. tainted” column). As illustration of KQ manipu-
lation functions, we include the KQ insertion function for each
KQ.

4.1.3 EH-Signature Collection
After the KQs have been found, we instrument these KQ-related
functions (insertion, initialization, and dispatch) as described in
Sections 3.2 and 3.3). Then we run the training workloads (Sec-
tion 5.1) in a training process (Section 4.1.3). The Callback-
Signatures collected during training are assumed to be legitimate
and incorporated into the EH-Signature Collection.
We developed a set of utility functions to manage the Callback-

Table 1: Representative Automatically Detected KQs

KQ Name Queue header
variable

param.
tainted

Name of Request
Insertion Function(s)

Windows Research Kernel
I/O timer
queue

IopTimer-
QueueHead

2 IoInitializeTimer

RegistryCall-
back
queue

CmpCallBack-
Vector

1 CmRegisterCallback

Load image
notification
queue

PspLoadImage-
NotifyRoutine

0 PsSetLoadImageNo-
tifyRoutine

Linux Kernel 2.4.32
Tasklet queue tasklet_vec[],

tasklet_hi_vec[]
1 tasklet_schedule,

tasklet_hi_schedule
Packet type
queue

ptype_all,
ptype_base[]

1 dev_add_pack

Signatures, including the EH-Signature Collection. These func-
tions support the generation, comparison, insertion, and search of
Callback-Signatures. For example, during the training phase, the
same EH-signature can be detected repeatedly from time to time,
so one helper function checks for duplicate EH-signatures. These
helper functions are implemented in 900 lines of C code, and they
are invoked both in the training phase (for EH-Signature collec-
tion) and in the testing phase (to query EH-Signatures during
Callback-Signature validation).

4.1.4 Validation of Callback-Signature in WRK
We instrument the dispatcher of every identified KQ in the WRK
so that the dispatcher checks the legitimacy of a pending KQ re-
quest before invoking the call back function. To perform the
check, the dispatcher first retrieves the Callback-Signature from a
pending request, and then matches the Callback-Signature against
the EH-Signature Collection. If a match is found, the dispatcher
invokes the call back function; otherwise, the dispatcher takes
necessary actions (e.g., generating a warning message).

More specifically, we instrument the dispatch functions listed in
Table 2, and our instrumentation consists of about 300 lines of C
code.
The current implementation of Callback-Signature validation in
the dispatcher follows directly from the conceptual design. It
guarantees that only a validated KQ request will be executed.
However, we are aware of the lengthened critical path for event
handling in the kernel. We are considering several implementa-
tion alternatives that will take the validation code out of the criti-
cal path in the KQ dispatcher. For example, validation can be
done at the KQ request insertion time. We will add a validation
stamp (an encrypted checksum) to protect each validated KQ
request. At the KQ request dispatch time, the validation stamp can
be quickly checked with small constant overhead. All unknown
and invalid KQ requests (e.g., the ones inserted without using the
official API and thus without the stamp) will be rejected.

4.2 Linux Implementation of KQguard

4.2.1 Construction of Callback-Signatures in Linux
We have started the work on the Linux implementation of KQ-
guard, which follows the same conceptual design described in
Section 3. We instrumented the Linux kernel functions that mani-
pulate the Linux KQs. Of course, the names and syntax of specific
functions that we instrument are different: they are listed in Table
10 of the Appendix, in the last two columns.

As a concrete example, the de-linking of Callback-function ad-
dresses and global variables as well as the identification of heap
objects follow the same design (Section 3.3.2) as in our WRK
implementation, but the heap object identification uses kmalloc
and kfree, which are specific to Linux.

4.2.2 Automated Detection of KQs in Linux
We apply the KQ detector to Linux kernel 2.4.32 (with 482,369
lines of C code) and it found 22 KQs. Two representative KQs are
listed in Table 1, and the full list is in Table 10 of the Appendix.

Perhaps not surprisingly, we found differences as well as similari-
ties between WRK and Linux. As an example of differences,
WRK KQs are implemented both as linked lists and arrays, but all
Linux KQs are implemented as linked lists. More concretely,

8

WRK and Linux have different name conventions: the WRK
linked list implementation of KQs utilizes the structure type
LIST_ENTRY, while the Linux linked list uses the structure type
list_head. With minor modifications to reconcile these differenc-
es, our KQ detector is able to analyze both the WRK and the Li-
nux kernel.

4.2.3 Validation of Callback-Signature in Linux
We instrument the functions listed in the “name of dispatch func-
tions” column of Table 10 to validate the pending KQ requests in
Linux. The retrieval of Callback-Signature follows the same
process as the WRK implementation, and the EH-Signature man-
agement functions were ported from our WRK implementation.

5. Evaluation of KQguard in WRK
Due to the ongoing efforts to implement KQguard in Linux (Sec-
tion 4.2), we only report the evaluation results of the more mature
WRK implementation of KQguard in this section.

Table 2: WRK functions modified to guard the KQs

Kernel Queue Dispatcher Functions Modified
Per-stream context
queue

FsRtlTeardownPerStreamContexts

I/O timer queue IopTimerDispatch
File system registra-
tion change notifi-
cation queue

IoRegisterFileSystem, IoUnregisterFileSys-
tem, IoRegisterFsRegistrationChange

Process crea-
tion/deletion notifi-
cation queue

PspCreateThread, PspExitProcess

Driver Reinitialize
routine queue

IopCallDriverReinitializationRoutines

Boot driver reini-
tialize routine queue

IopCallBootDriverReinitializationRoutines

Thread crea-
tion/deletion notifi-
cation queue

PspCreateThread, PspExitThread

RegistryCallback
Queue

CmpCallCallBacks

Load-image notifi-
cation queue

PsCallImageNotifyRoutines

Bug check reason
callback queue

KiInvokeBugCheckEntryCallbacks

Callback object
queue

ExNotifyCallback

Waiting IRP queue FsRtlRemoveAndCompleteWaitIrp,
FsRtlUninitializeOplock

IRP waiting lock
queue

FsRtlPrivateCancelFileLockIrp

Firmware table
providers queue

ExpGetSystemFirmwareTableInformation

BugCheckCallback
routine queue

KiScanBugCheckCallbackList

Deferred write
queue

CcPostDeferredWrites

Change directory
notification queue

FsRtlNotifyFilterReportChange

System worker
thread queue

ExpWorkerThread

The DPC queue KiExcuteDpc, KiRetireDpcList
The APC queue KiDeliverApc

5.1 Experimental Method and Setup
We evaluate both the effectiveness and efficiency of KQguard
through measurements on production kernels. By effectiveness we
mean precision (whether it misidentifies the attacks found, meas-
ured in false positives) and recall (whether it misses a real attack,
measured in false negatives) of KQguard when identifying KQ
hijack attacks. By efficiency we mean the overhead introduced by
KQguard.

We divide the effectiveness evaluation into two groups: defense
against real malware attacks (Section 5.2) and defense against
synthetic attacks (Section 5.3). Real malware represents an easier
class of attacks (only callback-into-malware). Synthetic attacks
include both callback-into-malware and callback-into-libc attacks.
We show that KQguard can detect all the real malware and all the
synthetic attacks (no false negatives). In Section 5.4, we study the
potential false positives from KQguard, which may arise due to an
incomplete EH-Signature Collection or imperfect Callback-
Signature design. We found no false positives in our experiments.

The efficiency evaluation of KQguard introduces some new chal-
lenges due to the asynchronous nature of KQ executions. First,
the application benchmarks do not invoke directly any KQ re-
quests. Second, the kernel services that create KQ request are not
necessarily invoked directly by applications. Consequently, be-
sides microbenchmarks that measure direct invocations of KQ
operations, it is non-trivial to measure directly the impact on per-
formance caused by the various KQs.

The microbenchmark 1 in Section 5.5 measures the actual time
taken to run the Callback-Signature validation algorithm of KQ-
guard. The microbenchmark 2 measures the difference between a
kernel with and without KQguard when handling specific events.
Both show a very small overhead, particularly when compared to
typical callback functions that it guards.

The macrobenchmarks in Section 5.5 measure the total elapsed
time of an application macrobenchmark run. The design rationale
of the experiments is that various kernel services are triggered
during a resource-intensive application execution. Consequently,
the total elapsed time is a direct measure of application resource
requirements plus kernel requirements. By comparing the elapsed
time of the original kernel (without KQguard) and the instru-
mented kernel with KQguard, we have a measure of the additional
overhead introduced by the KQguard. This is a composite meas-
ure of the accumulated overhead for all the KQs.

All the experiments are run on a 2.4 GHz Intel Xeon 8-Core serv-
er with 16 GB of RAM. The host operating system is Microsoft
Windows XP Service Park 3 running Microsoft Virtual PC 2007
(version 6.0.156.0). The guest operating systems is Windows
Server 2003 Service Pack 1 running the WRK, and it is allocated
256 MB of RAM and 20 GB of hard disk.

Workloads. For performance evaluation, we have chosen several
resource-intensive application benchmarks. They have been cho-
sen because each one saturates some resource and therefore kernel
overhead should have a noticeable effect on the elapsed time. The
first benchmark is Super PI, a CPU-intensive workload calculat-
ing 32 million digits of π. The second benchmark copies a direc-
tory with a total size of 1.5 GB, which stress the file system. The
third benchmark is also CPU-intensive, performing the compres-
sion and decompression of the 1.5 GB directory with 7-Zip. The
fourth benchmark downloads a 160 MB file with WinSCP, which

9

stresses the network connection. We also ran standard bench-
marks such as PostMark and PassMark.
For effectiveness evaluation, we run a set of normal workload
programs in the modified WRK to measure the false positive rate
of our KQ guarding. These programs include Acrobat Reader,
Windows Driver Kit, Firefox, Windows Media Player, Easy Me-
dia Player, and several games (Minesweeper, Microsoft Hearts
Network, and 3D pinball). We chose these programs to represent
the normal workload on a Windows platform, for example docu-
ment processing, programming (Windows Driver Kit has tools to
compile device drivers), web browsing, and entertainment (mul-
timedia applications and gaming). This set of normal use pro-
grams showed zero false positives (Section 5.4).

For the false negatives part of effectiveness evaluation, we chose
11 real-world malware samples (section 5.2) and nine synthetic
test device drivers (section 5.3) as test workloads. The real-world
malware samples come in the form of Windows executable files,
and they can be activated by running the respective executables
(e.g., malware.exe in Figure 8), which includes the automatic
installation of malicious device drivers that hijack KQs. Once
active, the malicious drivers initiate the KQ hijack attacks that
KQguard detects. The synthetic device drivers that we develop
are manually installed into the WRK using the “Add Hardware
Wizard” from the Control Panel.

5.2 Real World KQ Hijack Attacks
We start our evaluation of KQguard effectiveness by testing our
WRK implementation (Section 4.1) against real work KQ Hijack
attacks in Windows OS. Such malware samples are available from
open sources such as Offensive Computing
(http://offensivecomputing.net). So far, we studied 10 spam bots
downloaded from this website.

To test the malware samples in a safe environment, we created a
malware analysis laboratory consisting of several dedicated vir-
tual machines that have no access to the public network. We start
the virtual machine monitor (e.g., VMware Workstation) in a
clean state and boot a clean copy of WRK instrumented with KQ-
guard. We run each malware sample in the virtual machine and
collect the monitoring log generated by KQguard during the mal-
ware's execution.

We have studied the KQ hijacking behavior of several well-
known malware (e.g., spam bots), and report the results in Table
3. We started with malware with reported KQ Hijack Attacks,
which are marked with a “√” with citation. We were able to con-
firm some of these attacks, shaded in green. The rows with green
“√” without citations are confirmed new KQ Hijack Attacks that
have not been reported by other sources.
We discuss the KQ Hijack Attack in Rustock as an illustrative
example. It is known [2][15][23] that Rustock.C uses the Timer
queue, the Create Process Notification queue, and the APC
(Asynchronous Procedure Call) queue. However, all the Rus-
tock.C samples that we obtained failed to run in our lab, perhaps
due to the virtual environment. Instead, we were able to run a
closely related variant, Rustock.J, and we confirmed that Rus-
tock.J uses the KQ Hijack Attack on Load-Image Notification
queue, the Create Process Notification queue, and the APC queue.
Figure 8 shows a screenshot in which KQguard for the APC
queue generated a warning message about a suspect APC callback
function at address 0xF83FE316, which falls within the address

range of a device driver called msliksurserv.sys that is loaded by
Rustock.J. This confirmed detection of Rustock.J hijacking the
APC queue marks the corresponding entry in Table 3 as green.
To confirm the origin of callback-into-malware, we use WRK’s
PsLoadedModuleList. However, advanced malware such as
Rustock.J can remove their entries from this global list in order to
hide. To find the true information (e.g., address range) about a
hidden malicious device driver, we instrument the device driver
loading function of the WRK to log information of every loaded
driver, including its name and address range. We find this ap-
proach effective in detecting hidden drivers installed by Rus-
tock.J, Pushdo/Cutwail, Storm/Peacomm, Srizbi, TDSS, and Ze-
roAccess.

 Another technique that we use to attribute KQ requests to a mal-
ware sample is call stack information. For example, when a new
DPC request structure is initialized via the API
KeInitializeDpc, we check the device driver calling this
API. In order to confirm the origin of the caller, we modify func-
tions such as KeInitializeDpc to traverse the call stack,

Table 3: Known KQ Hijack Attacks in Current Malware

KQ =>

Malware

Timer
/DPC

Worker
Thread

Load
Image
Notify

Create
Process
Notify

APC
FsRegis
tration
Change

Registr
yOpCal
lback

Rustock.C √ [2]
[15]

√ [23] √

[23]

Rustock.J √ √ √
Pushdo /
Cutwail

√ √ [8] √ √ [8] √ [8]

Storm /
Peacomm

√ √ [4] √
[20]

Srizbi √ √
BlackEnergy √ [11]
Brazilian
banker

 √ [11]

TDSS √ √ √
Duqu √ √ [13] √
ZeroAccess √ √ [9] √ [9] √
Koutodoor √ √
Pandex √
Mebroot √

Figure 8: Detection of KQ Hijack Attacks in Rustock.J

10

which contains the return addresses in the caller, the caller’s call-
er, and so on. By mapping the caller function(s) to the loaded
device drivers, we can find any malicious driver(s) anywhere in
the call chain, thus confirming the KQ Hijack Attack on DPC.
Call stack walk has helped us confirm the KQ Hijack Attacks in
Rustock.J, Storm/Peacomm, and ZeroAccess.

For all the malware that we were able to activate, we confirmed
the reported KQ Hijack Attacks, except for the Duqu attack on
Load-Image Notification queue. The study of Rustock shows that
malware designers have significant ability and flexibility in hi-
jacking different KQs. Concretely, Rustock.J has stopped using
the Timer queue, which Rustock.C uses, but Rustock.J started to
use the Load-Image Notification queue, which Rustock.C does
not. This may have happened to Duqu’s attack on the same queue,
or Duqu does not activate the attack on Load-Image Notification
queue during our experiment. This kind of evolution underscores
the importance of guarding all KQs preventively, not just reacting
to the ones that have been reported.

5.3 Protection of All KQs
In addition to real world malware, we created synthetic KQ Hi-
jack Attacks for two reasons. First, the malware testing was in-
complete, as shown by several KQs (9 in Table 8 have maximum
queue length of zero) that have not been called during our testing.
Examples of such KQs include the Thread Creation/Deletion No-
tification queue and the Waiting IRP queue. Second, the malware
analyzed in Section 5.2 belong to the callback-into-malware cate-
gory. Although there have been no reports of callback-into-libc
attacks in the wild, it is important to evaluate the effectiveness of
KQguard for both kinds of attacks.

For completeness, we developed a test Windows device driver for
each of the nine KQs that have not been called (zero length in
Table 8). These test drivers have a common code pattern: initializ-
ing and inserting a KQ request data structure into their respective
KQs, and using the same callback function (which calculates a
factorial of a small fixed number). The main difference among the
test drivers is the specific APIs called to initialize and insert KQ
requests. These test drivers are not part of the normal set of legi-
timate drivers. Therefore, the KQguard should raise alarms when
such test drivers become active.

We have confirmed that our KQ defense can detect all the test
device drivers, which suggests that our defense is effective
against potential and future KQ Hijack attacks. We observe that
the KQguard defense does not contain specific knowledge of the
malware internals or the internals of the test drivers. Consequent-
ly, we have confidence that KQguard defense will work for a
wide range of KQ Hijack Attacks regardless of their implementa-
tion details.

5.4 False Alarms
The complete defense (zero false negatives) achieved by KQ-
guard against malware (Section 5.2) and synthetic test drivers
(Section 5.3) may suggest that KQguard could be easily triggered.
In experiments running a variety of benchmarks and normal use
application workloads, we have found zero false positives. This is
achievable when two conditions hold: (1) the Callback-Signature
validation against EH-Signature Collection has no errors, and (2)
the training workload is comprehensive to produce the full EH-
Signature Collection.

To evaluate the false positive rate of our KQ guarding, we first
run the WRK in the training mode to collect EH-Signatures. We
let the machine run for half an hour, during which time we run
Notepad, My Computer, WinSCP, and Internet Explorer; then we
reboot the machine and repeat the process. During the first run we
collect 855 EH-Signatures, after the first reboot we collect 10
more EH-Signatures, and after the second, third, and fourth re-
boots we collect three, one, and one new signature, respectively.
After the fifth reboot we do not see any new signatures. There-
fore, we stop the training after five reboots with 870 EH-
Signatures in the EH-Signatures Collection.
Next we rebuild the WRK so that it will be running in the test
mode based on the EH-Signatures Collection. Then we reboot the
virtual machine using the instrumented WRK. During the period
of more than one day, we run the workload programs discussed in
Section 5.1, as well as other normal applications to keep the in-
strumented WRK active as much as possible. Throughout the
testing phase, we observe zero false alarms.
The zero false positives result shows that both conditions hold.
First, we have an effective Callback-Signature validation algo-
rithm capable of matching all legitimate KQ requests against the
EH-Signatures Collection. Second, the training phase outlined in
Section 3.3 has built a full EH-Signatures Collection with respect
to the workload described in Section 5.1.
While the experimental result appears encouraging, we avoid
making a claim that dynamic analysis will always achieve zero
false positives. Instead, we note that the 870 EH-Signatures are
not collected in one run. Concretely, 15 of them are collected
after rebooting the machine at least once. We analyzed the details
of these 15 “late-coming” EH-Signatures to better understand our
dynamic analysis based signature collection. These 15 EH-
Signatures are different from previous signatures in terms of ei-
ther the callback-function (4 cases) or the callback-parameters (11
cases). More specifically, the new callback functions can be from
the core kernel or a device driver, and the new callback parame-
ters can be a global variable or a heap variable. This variety sug-
gests some potential limitations of a dynamic analysis based ap-
proach. Fortunately, our experience suggests that the set of legi-
timate KQ signatures can be collected within a few reboots.
We note that an alternative to dynamic analysis is the full kernel
source code availability assumption. For example, a software
vendor in possession of the entire kernel source code and device
drivers (with or without source code), should be able to build the
full EH-Signatures Collection through a combination of static and
dynamic analysis as described in this paper.

5.5 Performance Overhead
As mentioned in Section 5.1, the performance evaluation of KQ-
guard is non-trivial due to the asynchronous nature of KQ opera-
tions. We divide the performance measurements into two steps.
First, we measure the overhead of KQguard through microben-
chmarks that invoke those operations directly. Second, we meas-
ure the difference in elapsed time of application macroben-
chmarks by comparing the measured response time on the original
kernel and the KQguard-instrumented kernel.
For the first step, we measured the overhead of KQguard valida-
tion check and heap object tracking. KQguard validation check
matches Callback-Signatures against the EH-Signature Collection,
and its overhead consists of matching the callback-function part
and the callback-parameters part. Heap object tracking affects
every heap allocation and deallocation operation (e.g., ExAlloca-

11

tePoolWithTag and ExFreePool in WRK). These heap operations
are invoked at a global level, with overhead proportional to the
overall system and application use of the heap.
Microbenchmark 1: we measured the total time spent in perform-
ing 1,000 KQguard validation checks for the DPC queue and the
I/O timer queue. We chose these two KQs because they are more
actively invoked than other KQs (Table 8). The main result is that
global heap object tracking during the experiment dominated the
KQguard overhead. Table 4 shows that DPC queue validation
consumed 93.7 milliseconds of CPU, while heap object tracking
consumed 8,527 milliseconds. These 1,000 DPC callback func-
tions are dispatched over a time span of 250,878 milliseconds (4
minutes 11 seconds). The total CPU consumed by our KQguard
validation for DPC queue and the supporting heap object tracking
is 8,620.7 milliseconds (about 3.4%). The measurements of the
I/O timer queue confirm the DPC queue results.

Microbenchmark 2: we measure the overhead based on each indi-
vidual KQ callback function. This is because the validation
checks for each individual callback function may vary in com-
plexity (e.g., they may check different numbers of parameters and
the de-linking of each parameter may also be different across
callback functions), and each callback function may require dif-
ferent amount of execution time, so the relative slowdown caused
by our validation may vary from one callback function to another.

Table 5 shows overhead measurements for three representative
KQ callback functions in the DPC queue and one callback func-
tion in the I/O timer queue. For each callback function, we meas-
ure its execution time, including the validation check and the
actual execution in the original WRK (shown in the “Original”
column); then we measure the same callback function with KQ-
guard and show the result in the “With KQguard” column. From
the difference between these two execution times we calculate the
signature validation check time (shown in the “Signature

Table 4: KQguard Overhead (1,000 Callback Function calls)

KQ Heap Object
Tracking

Time (milli-
seconds)

KQ Valida-
tion Time
(millise-
conds)

Total Time
(millise-
conds)

CPU Over-
head per
minute

DPC
queue

8,527 93.7 250,878 3.4%

I/O timer
queue

11,807 180 345,825 3.5%

Table 5: KQguard Overhead of 4 Callback Functions (C1:
acpi.sys+0x2c50; C2: atapi.sys +0x8a0a; C3:acpi.sys+0x6cce; C4:
classpnp.sys+0x1069)

KQ: Call-
back

function

Origi-
nal
(us)

With
KQguard

(us)

Signature
Validation

(us)

Over-
head

Number of
measure-

ments
DPC: C1 461

±102
471
±102

10.2
±0.6

2.2% 26

DPC: C2 94
±2.8

184
±4.2

90
±2.5

96% 505

DPC: C3 286
±31

296
±31

10
±0.27

3.5% 18

I/O Timer:
C4

1,470
±174

1,577
±174

107
±13

7.3% 100

Validation” column). Then the overhead is calculated by dividing
signature validation time by the original execution time. The ex-
ecution time results for each callback function are averaged across
multiple invocations of that callback function and we report the
number of measurements in the last column of Table 5.

Table 5 shows the execution times of different callback functions
varying significantly, from 94 to 1,470 microseconds. In compari-
son, the signature validation time is relatively small (from 10
microseconds to 107 microseconds). As a result, the relative
overhead added by KQguard varies from 2.2% for callback func-
tion acpi.sys+0x2c50 to 96% for callback function
atapi.sys+0x8a0a. The main source of variation comes
from heap object tracking. These overhead measurements were
obtained with a relatively busy heap: an average of 164 heap op-
erations per second, with 37,000 to 38,000 objects in the heap,
and a peak of 39,681 objects.

For the second step, Table 6 shows the results of 5 application
level benchmarks that stress one or more system resources, in-
cluding CPU, memory, disk, and network. Each workload is run
at least 5 times and the average is reported. We can see that in
terms of execution time of the selected applications, KQguard
incurs modest elapsed time increases, from 2.8% for decompres-
sion to 5.6% for directory copying. These elapsed time increases
are consistent with the microbenchmark measurements (Table 4
and Table 5), with higher or lower heap activities as the most
probable cause of the variations.

Table 7 shows the results of running the PostMark file system
benchmark. The KQguard-instrumented WRK increases the
read/write throughput of the file system to drop by about 3.9%.
Similar results were found when we ran the PassMark Performan-
ceTest benchmark, with an execution time increase of 4.9%, and
memory consumption increase of 2.9%.

To better understand the reasons for the overhead, we measure the
maximum KQ length (i.e., the maximum number of pending re-
quests for each KQ) and the dispatch frequency of the 20 KQs
(the APC queue is divided into two sub-queues) during the expe-
riments, as shown in Table 8. The measurements show that 9 KQs
have not been called (0 maximum queue length). Of the 11 KQs
that have been called, 5 KQs have infrequent dispatches (0 per
minute) and 6 KQs are active (non-zero requests per minute). In
terms of invocation frequency, the APC queue is the most active:
372 callbacks occur per minute on average. All KQs taken togeth-
er, callbacks happen 787 times per minute, or 13 times per
second.

Table 6: Performance Overhead of KQ Guarding in WRK

Workload Original
(seconds)

KQ Guarding
(seconds)

Slowdown

Super PI 2,108
±41

2,213
±37

5.0%

Copy a 1.5 GB
directory

231
±9.0

244
±15.9

5.6%

Compress a 1.5
GB directory

1,113
±24

1,145
±16

2.9%

Decompress a 1.5
GB directory

181
±4.1

186
±5.1

2.8%

Download a 160
MB file

145
±11

151
±11

4.1%

12

Table 7: Performance Overhead Measured by PostMark

Workload Original
(MB/s)

KQ Guarding
(MB/s)

Overhead

Read 855 MB data 3.41±0.11 3.29±0.07 3.5%
Write 1,600 MB data 6.38±0.20 6.13±0.23 3.9%

Table 8: Frequency and intensity of KQ invocation in WRK

K-Queue Name Max.
Length

Frequency of dis-
patch (per minute)

Per-stream context queue 0 0
I/O timer queue 8 181
File system registration
change notification queue

9 2

Process Creation/Deletion
notification queue

7 3

Driver Reinitialize routine
queue

8 0

Boot driver Reinitialize rou-
tine queue

5 0

Thread Creation/Deletion
notification queue

0 0

RegistryCallback queue 0 0
Load image notification
queue

0 0

Bug check reason callback
queue

1 0

Callback object queue 4 0
Waiting IRP queue 0 0
IRP waiting lock queue 0 0
Firmware table providers
queue

0 0

BugCheckCallback routine
queue

7 0

Deferred write queue 0 0
Change directory notification
queue

0 0

APC
queue

KernelRoutine 476 312
NormalRoutine 203 60

DPC queue 127 226
System worker thread queue 15 3
Total 870 787

6. Related Work
In this section, we survey related work that can potentially solve
the KQ hijacking problem and satisfy the five design requirement:
efficiency, effectiveness, coverage, extensibility, and inclusive-
ness (Section 2.3).

SecVisor [25] or NICKLE [24] are designed to preserve kernel
code integrity or block the execution of foreign code in the kernel.
They can defeat callback-into-malware KQ attacks because such
attacks require that malicious functions be injected somewhere in
the kernel space. However, they cannot detect callback-into-libc
attacks because such attacks do not inject malicious code or modi-
fy legitimate kernel code. HookSafe [31] is capable of blocking
the execution of malware that modifies legitimate function poin-
ters to force a control transfer to the malicious code. However,
HookSafe cannot prevent KQ hooking attacks because they do not
modify existing and legitimate kernel function pointers but in-
stead supply malicious function pointers in their own memory
(i.e., the KQ request data structures).

CFI (Control Flow Integrity) [1] can ensure that control transfers
(including invocations of function pointers) of a given program
always conform to a predefined control flow graph. Since KQs
involve function pointers (i.e., the callback functions), CFI is a
relevant solution. However, CFI requires a fixed control flow
graph but the introduction of new device drivers definitely re-
quires a change to the control flow graph, so CFI does not satisfy
the extensibility requirement. SBCFI [22] performs a garbage-
collection style traversal of kernel data structures to verify that all
function pointers encountered target trusted addresses in the ker-
nel, so SBCFI can potentially detect a callback-into-malware KQ
attack. However, SBCFI is designed for persistent kernel control
flow attacks (e.g., it only checks periodically) but KQ hijacking
attacks are transient, so SBCFI may miss many of them. Moreo-
ver, SBCFI requires source code so it does not satisfy the inclu-
siveness requirement. IndexedHooks [16] provides an alternative
implementation of CFI for the FreeBSD 8.0 kernel by replacing
function addresses with indexes into read-only tables, and it is
capable of supporting new device drivers. However, similar to
SBCFI, IndexedHooks requires source code so it does not satisfy
the inclusiveness requirement.

PLCP [32] is the most comprehensive defense against KQ hijack-
ing attacks so far, capable of defeating both callback-into-
malware and callback-into-libc attacks. The basic idea of PLCP is
to check the legitimacy of every pending KQ request before ser-
vicing it; the check is performed not only on the callback function
but also on all possible function pointers reachable from the con-
textual data by the control flow of the callback function. In order
to identify all such “check points” as well as the white list for
each “check point”, PLCP employs static program analysis (e.g.,
points-to analysis and transitive closure analysis) of the kernel
source code. However, PLCP has some limitations: it does not
satisfy the inclusiveness requirement due to its reliance on source
code; it has high performance overhead so it does not satisfy the
efficiency requirement. For example, in the worst case, it can
cause 15 times slowdown to the applications.

7. Conclusion
Kernel Queue (KQ) Hijack Attacks are a significant problem. We
outlined 11 real world malware attacks [2][4][8][9][11][13][15]
[20][23] and 9 synthetic attacks to cover all the KQs in the WRK.
It is important for a solution to have 5 requirements: efficiency
(low overhead), effectiveness (precision and recall of attack de-
tection), coverage (protecting all KQs), extensibility (accommo-
dation of new KQs) and inclusiveness (protection of kernels with
and without source code). Current kernel protection solutions
have difficulties with simultaneous satisfaction of all four re-
quirements.
We describe the KQguard approach to defend kernels against KQ
Hijack Attacks. The design of KQguard is independent of specific
details of the attacks. Consequently, KQguard is able to defend
against not only known attacks, but also anticipated future attacks
on currently unscathed KQs. We evaluated the WRK implementa-
tion of KQguard, demonstrating the effectiveness and efficiency
of KQguard by running a number of representative application
benchmarks. In effectiveness, KQguard achieves zero false nega-
tives (detecting all the 11 real world malware and 9 synthetic
attacks) and zero false positives (no false alarms after a proper
training process). In performance, KQguard introduces only a
small overhead of about 100 microseconds per validation and up
to 5% slowdown for resource-intensive application benchmarks
due to heap object tracking.

13

8. REFERENCES
[1] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. 2005.

Control-flow integrity. Proceedings of the 12th ACM Confe-
rence on Computer and Communications Security, Nov.
2005.

[2] Anselmi, D., Boscovich, R., Campana, T. J., Doerr, S., Lau-
ricella, M., Petrovsky, O., Saade, T., Stewart, H. 2011. Bat-
tling the Rustock Threat. Microsoft Security Intelligence Re-
port, Special Edition, January 2010 through May 2011.

[3] Baliga, A., Ganapathy, V., and Iftode, L. 2008. Automatic
inference and enforcement of kernel data structure inva-
riants. In ACSAC ’08: Proceedings of the 2008 Annual Com-
puter Security Applications Conference, pages 77–86. IEEE
Computer Society.

[4] Boldewin, F. 2007. Peacomm.C - Cracking the nutshell. Anti
Rootkit, September 2007.
http://www.antirootkit.com/articles/eye-of-the-storm-
worm/Peacomm-C-Cracking-the-nutshell.html.

[5] Brumley, D. 1999. Invisible intruders: rootkits in practice.
;login:, 24, Sept. 1999.

[6] Castro, M., Costa, M., Harris, T. 2006. Securing Software by
Enforcing Data-flow Integrity. In Proceedings of OSDI'06.

[7] Chiang, K., Lloyd, L. 2007. A Case Study of the Rustock
Rootkit and Spam Bot. Proceedings of the First Workshop
on Hot Topics in Understanding Botnets (HotBots'07), April
2007.

[8] Decker, A., Sancho, D., Kharouni, L., Goncharov, M., and
McArdle, R. 2009. Pushdo/Cutwail: A Study Of The Push-
do/Cutwail Botnet. Trend Micro Technical Report, May
2009.

[9] Giuliani, M. ZeroAccess – an advanced kernel mode rootkit,
rev 1.2. www.prevxresearch.com/zeroaccess_analysis.pdf

[10] Hayes, B. 2010. Who Goes There? An Introduction to On-
Access Virus Scanning, Part One. Symantec Connect Com-
munity. http://www.symantec.com/connect/articles/who-
goes-there-introduction-access-virus-scanning-part-one

[11] Kapoor, A. and Mathur, R. 2011. Predicting the future of
stealth attacks. Virus Bulletin 2011, Barcelona.

[12] Kaspersky Lab. The Mystery of Duqu: Part One.
http://www.securelist.com/en/blog/208193182/The_Mystery
_of_Duqu_Part_One

[13] Kaspersky Lab. The Mystery of Duqu: Part Five.
http://www.securelist.com/en/blog/606/The_Mystery_of_Du
qu_Part_Five

[14] Kil, C., Sezer, E., Azab, A., Ning, P., and Zhang, X. 2009.
Remote attestation to dynamic system properties: Towards
providing complete system integrity evidence. Proceedings
of the 39th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’09), Lisbon, Por-
tugal.

[15] Kwiatek, L. and Litawa, S. 2008. Yet another Rustock analy-
sis... Virus Bulletin, August 2008.

[16] Li, J., Wang, Z., Bletsch, T., Srinivasan, D., Grace, M., and
Jiang, X. 2011. Comprehensive and Efficient Protection of
Kernel Control Data. IEEE Transactions on Information Fo-
rensics and Security, 6(2), June 2011.

[17] Microsoft. Using Timer Objects.
http://msdn.microsoft.com/en-us/library/ff565561.aspx.

[18] Microsoft. Checked Build of Windows.
http://msdn.microsoft.com/en-
us/library/windows/hardware/ff543457%28v=vs.85%29.aspx

[19] Necula, G. C., McPeak, S., Rahul, S. P. and Weimer, W.
2002. CIL: Intermediate language and tools for analysis and
transformation of C programs. Proceedings of Conference on
Compiler Construction (CC), Grenoble, France, Apr. 2002.

[20] OffensiveComputing. Storm Worm Process Injection from
the Windows Kernel.
http://offensivecomputing.net/papers/storm-3-9-2008.pdf

[21] Petroni, N., Fraser, T., Molina, J., Arbaugh, W. A. 2004.
Copilot—a coprocessor-based kernel runtime integrity moni-
tor. Proceedings of the 13th USENIX Security Symposium,
San Diego, CA, Aug. 2004.

[22] Petroni, N. and Hicks, M. 2007. Automated detection of
persistent kernel control-flow attacks. Proceedings of ACM
Conference on Computer and Communications Security
(CCS’07).

[23] Prakash, C. 2008. What makes the Rustocks tick! Proceed-
ings of the 11th Association of anti-Virus Asia Researchers
International Conference (AVAR’08), New Delhi, India.
http://www.sunbeltsecurity.com/dl/WhatMakesRustocksTick
.pdf

[24] Riley, R., Jiang, X., and Xu, D. 2008. Guest-transparent
prevention of kernel rootkits with VMM-Based memory
shadowing. Proceedings of the 11th International Sympo-
sium on Recent Advances in Intrusion Detection (RAID’08).

[25] Seshadri, A., Luk, M., Qu, N., and Perrig, A. 2007. SecVi-
sor: A tiny hypervisor to provide lifetime kernel code integri-
ty for commodity OSes. Proceedings of ACM Symposium on
Operating Systems Principles (SOSP’07).

[26] Smalley, S., Vance, C., and Salamon, W. 2002. Implement-
ing SELinux as a Linux Security Module. In Technical Re-
port. NSA, May 2002.

[27] Solar Designer. Bugtraq: Getting around non-executable
stack (and fix). Website.
http://seclists.org/bugtraq/1997/Aug/63, accessed March
2011.

[28] Super PI. http://www.superpi.net/
[29] Symantec Connect Community. W32.Duqu: The Precursor

to the Next Stuxnet. Oct. 2011.
http://www.symantec.com/connect/w32_duqu_precursor_ne
xt_stuxnet

[30] Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V. W.,
and Ning, P. 2011. On the Expressiveness of Return-into-libc
Attacks. Proceedings of the 14th International Symposium
on Recent Advances in Intrusion Detection (RAID 2011),
Menlo Park, California, September 2011.

[31] Wang, Z., Jiang, X., Cui, W., and Ning, P. 2009. Countering
kernel rootkits with lightweight hook protection. Proceed-
ings of ACM Conference on Computer and Communications
Security (CCS ’09).

[32] Wei, J., and Pu, C. 2012. Towards a General Defense against
Kernel Queue Hooking Attacks. Elsevier Journal of Com-

14

puters & Security, Volume 31, Issue 2, pp. 176-191, March
2012. doi:10.1016/j.cose.2011.12.007.

[33] Windows Research Kernel v1.2.
https://www.facultyresourcecenter.com/curriculum/pfv.aspx?
ID=7366&c1=en-us&c2=0

9. APPENDIX
Table 9: A List of Automatically-Detected KQs for the WRK

K-Queue Name Data Structure Type Queue header name (global
variable)

param.
tainted (static)

Name of Request Insertion Function(s)

I/O timer queue IO_TIMER IopTimerQueueHead 2 IoInitializeTimer
File system regis-
tration change noti-
fication queue

NOTIFICA-
TION_PACKET

IopFsNotifyChange-
QueueHead

0 IoRegisterFsRegistrationChange, IoUnregis-
terFsRegistrationChange

Process crea-
tion/deletion notifi-
cation queue

Array of
EX_CALLBACK

PspCreateProcessNotify-
Routine

0 PsSetCreateProcessNotifyRoutine

Driver reinitialize
routine queue

REINIT_PACKET IopDriverReinitialize-
QueueHead

3 IoRegisterDriverReinitialization

Boot driver reini-
tialize routine
queue

REINIT_PACKET IopBootDriverReinitialize-
QueueHead

3 IoRegisterBootDriverReinitialization

Thread Crea-
tion/Deletion notifi-
cation queue

Array of
EX_CALLBACK

PspCreateThreadNotifyRou-
tine

0 PsSetCreateThreadNotifyRoutine, PsRemo-
veCreateThreadNotifyRoutine

RegistryCallback
queue

Array of
EX_CALLBACK

CmpCallBackVector 1 CmRegisterCallback, CmUnRegisterCall-
back

Load image notifi-
cation queue

Array of
EX_CALLBACK

PspLoadImageNotifyRou-
tine

0 PsSetLoadImageNotifyRoutine, PsRemove-
LoadImageNotifyRoutine

Bug check reason
callback queue

KBUG-
CHECK_REASON_CA
LLBACK_RECORD

KeBugCheckReasonCall-
backListHead

1 KeRegisterBugCheckReasonCallback

Callback object
queue

CALL-
BACK_REGISTRATIO
N

ExpInitializeCallback 1 ExRegisterCallback, ExUnregisterCallback

Waiting IRP queue WAITING_IRP Queue head not a global
variable, instead one field of
any opportunistic lock ob-
ject

2 FsRtlWaitOnIrp

IRP waiting lock
queue

WAITING_LOCK FsRtlFileLockCancelColli-
deList, FsRtlWaitingLock-
LookasideList

2 FsRtlPrivateLock

Firmware table
providers queue

SYS-
TEM_FIRMWARE_TA
BLE_HANDLER_NOD
E

ExpFirmwareTableProvi-
derListHead

1 ExpRegisterFirmwareTableInformation-
Handler

BugCheckCallback
routine queue

KBUG-
CHECK_CALLBACK_
RECORD

KeBugCheckCallbackList-
Head

2 KeRegisterBugCheckCallback

Deferred write
queue

DEFERRED_WRITE CcDeferredWrites 2 CcDeferWrite

Per-stream context
queue

FSRTL_PER_STREAM
_CONTEXT

FSRTL_ADVANCED_FCB
_HEADER structure with a
file stream, no global header

1 FsRtlInsertPerStreamContext

Change directory
notification queue

NOTIFY_CHANGE A notify list associated with
a file system, no global
header

3 FsRtlNotifyFilterChangeDirectory

System worker
thread queue

WORK_QUEUE_ITEM ExWorkerQueue[3] 1 ExQueueWorkItem

APC queue APC Not found yet 5,1,3 KeInitializeApc
DPC queue DPC Not found yet 3 KiInitializeDpc

15

Table 10: A List of 22 Automatically-Detected KQs for Linux Kernel 2.4.32

K-Queue Name Data Structure Type Queue Header Name
(global variable)

param.
tainted
(static)

Name of Dispatch Func-
tion(s)

Name of Request Insertion
Function(s)

ACPI bus driver
queue

struct acpi_driver (struct
list_head)

acpi_bus_drivers 0 acpi_bus_find_driver acpi_bus_register_driver,
acpi_bus_unregister_driver

Task queue struct tq_struct (struct
list_head)

No single global
queue header; device
drivers can declare
their own queue
header.

1 run_task_queue queue_task

Soft timer queue struct timer_list (struct
list_head)

tvecs[] 1 run_timer_list add_timer, del_timer,
mod_timer

Tasklet queue struct tasklet_struct (next
* to self)

tasklet_vec[], task-
let_hi_vec[]

1 tasklet_action, task-
let_hi_action

tasklet_schedule, task-
let_hi_schedule

Packet type queue struct packet_type (next *
to self)

ptype_all,
ptype_base[],

1 dev_queue_xmit_nit, ne-
tif_receive_skb

dev_add_pack,
dev_remove_pack

IRQ action queue struct irqaction (next * to
self)

irq_desc[].action 1 handle_IRQ_event request_irq, free_irq

Binary formats
handler queue

struct linux_binfmt (next
* to self)

formats 0 sys_uselib,
search_binary_handler

register_binfmt, unregis-
ter_binfmt

PC Card client
driver queue

driver_info_t (next * to
self)

root_driver 0 bind_request register_pccard_driver,
unregister_pccard_driver

IP socket interfac-
es queue

struct inet_protosw (struct
list_head)

inetsw[] 0 inet_create inet_register_protosw,
inet_unregister_protosw

Power manage-
ment notification
queue

struct pm_dev (struct
list_head)

pm_devs 1 pm_send_all pm_register,
pm_unregister,
__pm_unregister,
pm_unregister_all

PCI driver queue struct pci_driver (struct
list_head)

pci_drivers 1 pci_announce_device_to_dri
vers

pci_register_driver,
pci_unregister_driver

Dead destination
cache queue

struct dst_entry (next * to
self)

dst_garbage_list 1 dst_run_gc dst_free

INET protocol
handlers queue

struct inet_protocol (next
* to self)

inet_protos[] 0 ip_local_deliver_finish,
icmp_unreach,

inet_add_protocol, in-
et_del_protocol

Console drivers
queue

struct console (next * to
self)

console_drivers 1; 0; 1; call_console_drivers, con-
sole_unblank, tty_open

register_console, unregis-
ter_console

Panic notifiers
queue

struct notifier_block (next
* to self)

panic_notifier_list 1 notifier_call_chain notifier_chain_register,
notifier_chain_unregister

Reboot notifiers
queue

struct notifier_block (next
* to self)

reboot_notifier_list 1 notifier_call_chain notifier_chain_register,
notifier_chain_unregister

Network notifiers
queue

struct notifier_block (next
* to self)

netdev_chain 1 notifier_call_chain notifier_chain_register,
notifier_chain_unregister

Network link no-
tifiers queue

struct notifier_block (next
* to self)

netlink_chain 1 notifier_call_chain notifier_chain_register,
notifier_chain_unregister

IPv4 Interface
address notifiers
queue

struct notifier_block (next
* to self)

inetaddr_chain 1 notifier_call_chain notifier_chain_register,
notifier_chain_unregister

IPv6 Interface
address notifiers
queue

struct notifier_block (next
* to self)

inet6addr_chain 1 notifier_call_chain notifier_chain_register,
notifier_chain_unregister

ADB device no-
tifiers queue

struct notifier_block (next
* to self)

adb_client_list 1 notifier_call_chain notifier_chain_register,
notifier_chain_unregister

HCI notifiers
queue

struct notifier_block (next
* to self)

hci_notifier 1 notifier_call_chain notifier_chain_register,
notifier_chain_unregister

