
1

The AWT, Applets, and Swing

Mark Allen Weiss

Copyright 1996, 1999, 2000

2

Outline of Topics

● The Abstract Window Toolkit
– Basic ideas

– User interfaces

– Output items: canvases and graphics

– Events

– Fancy layouts

● Applets
– HTML files

– Conver ting an application to an applet

– Restr ictions

3

Basic Ideas

● The Abstract Window Toolkit (AWT) is a GUI
toolkit designed to work across multiple
platforms.

● Not near ly as fancy as MFC.

● Event-dr iven: the window is displayed, and
when things happen, an event handler is called.
Generally, the default event handler is to do
nothing.

● Must i mpor t ja va.aw t .* and
ja va.aw t .ev ent.*

4

Evolution of GUIs

● Java 1.0
– basic AWT components

– terr ible event model

● Java 1.1
– same AWT components

– new event model

● Java 1.2
– new fancy Swing components

– same event model as 1.1

– not suppor ted in all browsers, but plug-in available

5

To Swing or Not?

● I f you are wr iting applications, Swing is by far
the preferable option
– faster

– prettier

– more flexible

● I f you are wr iting applets, decision is harder
– consumers not likely to have Java 1.2; can give it to

them, but download will be time-consuming. Most
consumers won’t bother and will go elsewhere

– corporate clients can be forced to go to Java 1.2

6

AWT vs Swing

● Concepts are all the same.
● We wil l discuss AWT, so applets will work

unobtrusively.

● Swing talk to follow separately. In this class:
– Use Swing for applications.

– For applets, consider using HTML forms and
server-side servlets. I f not, include Swing library in
jar file for distr ibution and hope that user has a fast
connection.

7

General Layout of AWT

Component

Container

PanelWindow

Dialog

FileDialog

Frame

Button
Canvas
Checkbox
Choice
Label
List

TextArea

TextField

8

● The parent class of many of the AWT classes.
● Represents something that has a position and a

size and can be painted on the screen as well as
receive input events.

● This is an abstract class and may not be
instantiated.

● Some important methods:
public void pain t (Gr aphic s g) ;

public void show ();

public void addC omponentLi sten er(C omponentL i sten er l)

Var ious routines to set fonts, handle mouse events, etc.

Component

9

Conta i ner

● The parent class of all components and one that
can contain other classes.

● Has a useful helper object called a
LayoutM anager , which is a class that
positions components inside the container .

● Some methods:
vo i d s etLay out(Layou t Manager mgr) ;

vo i d a dd(C omponent c omp) ;

vo i d a dd(C omponent c omp, Stri ng na me);

10

Top Level Windows

● Window: A top-level window that has no
border.

● Fr ame: A top-level window that has a border
and can also have an associated MenuBar .

● Di alog : A top-level window used to create
dialogs. One subclass of this is the
Fi l eDia l og .

11

Panel

● Subclass of Contai ner used inside other
containers.

● Used to store collections of objects.

● Does not create a separate window of its own.

12

Important I/O Components
● But ton : A push button.
● Canvas : General-purpose component that lets

you paint or trap input events from the user . I t
can be used to create graphics. Typically, is
subclassed to create a custom component.

● Checkbo x : A component that has an " on" or
" off " state. You can place Checkboxes in a
group that allows at most 1 box to be checked.

● Choice : A component that allows the selection
of one of a group of choices. Takes up litt le
screen space.

13

More I/O Components
● Label : A component that displays a Str ing at

a certain location.
● Li st : A scroll ing list of str ings. Allows one or

several items to be selected.
● TextAre a: Multiple line text components that

allows viewing and editing.
● TextFie l d: A single-line text component that

can be used to build forms.

14

Events (Java 1.1 World)

● Each component may receive events.
● Only objects that implement an

EventLi sten er inter face (e.g.
Act ionL i ste ner , MouseLis t ener) may
handle the event. The event is handled by a
performed method (e.g. actio nPerf ormed)

● Such objects must register , via an addListener ,
that they will handle the par ticular event.

● I t makes more sense when you see the example.
● Java 1.0 had a different, and very poor

alternative.

15

Most Common Listeners
● Act ionL i ste ner : button pushes, etc.
● KeyList ener : keystroke events (pressing,

releasing, typing)
● MouseLi sten er : mouse events

(pressing,releasing, clicking, enter /exit)
● MouseMot ion Liste ner : mouse moving

events (dragging, moving)
● TextLis t ene r : text in a component changes
● WindowLi ste ner : window events (closing,

iconifying, etc)

16

Event Handler Classes

● Event handler classes need access to
components whose state information might
need to be quer ied or changed

● Common to use inner classes

● Often anonymous inner classes used
– syntax can look ugly

– however, can see what actions wil l occur more easily
when event handler functionality is immediately
next to component

17

Adapter Classes

● Some listener inter faces require you to
implement several methods
– WindowListene r has 7!

● You must implement all methods of the
interface, not j ust the ones of interest.

● All l istener interfaces with multiple methods
have a corresponding Adapter class that
implements all methods with empty bodies
– so, you just extend the adapter class with methods

you are interested in; others get default

18

Making A Frame Close
● When frame is closed, Wi ndowEvent is

generated; someone should listen and handle
wi ndowCl osi ng method.
– Java 1.1: otherwise, frame stays open

– Java 1.2: otherwise, frame closes, but event thread
continues, even if no other visible components

– Java 1.3: frame closes, and can make ar rangements
for event thread to stop if no other visible
components

19

Implementing CloseableFrame
impo r t java.aw t .*;

impo r t java.aw t .event.* ;

publ i c class Cl oseableF r ame exte nds Frame i mplement s WindowLi stener

{

 public Close ableFrame ()

 { this(" "); }

 public Close ableFrame (String t itle)

 { super(t i tle); addWindowL i stener (t his); }

 public void windowClo sing (WindowEvent event)

 { System.e xit(0); }

 public void windowClo sed (WindowEve nt event) { }

 public void windowDei conified (WindowEvent event) { }

 public void windowIco nified (WindowEve nt event) { }

 public void windowAct i vated (WindowEve nt event) { }

 public void windowDea ctivated (WindowEvent event) { }

 public void windowOpe ned (WindowEve nt event) { }

}

20

Slicker Closeabl eFrame
impo r t java.aw t .*;

impo r t java.aw t .event.* ;

publ i c class Cl oseableF r ame exte nds Frame

{

 public Close ableFrame ()

 { this(" "); }

 public Close ableFrame (String t itle)

 {

 super(tit l e);

 addWindowL i stener (new Windo wAdapter () /* crea t e WindowLi stener * /

 {

 public void win dowClosin g(WindowEvent even t)

 { Sy stem.exit (0); }

 }

) ;

 }

}

21

The Event Dispatch Thread

● When event occurs, it is placed in an event
queue
– the event dispatch thread sequentially empties queue

and sequentially calls appropr iate methods for
registered listeners

– important that your event handlers finish fast;
otherwise, program will appear unresponsive

– spawn off a new thread if you can’ t handle event
quickly

– new thread should not touch user interface: Swing is
not thread safe! Use invok eLater and
invo keWait methods in the Event Queue class.

22

Graphics

● Generally need to overr ide the function
publ i c vo i d pa i nt(Grap hics g)

● Rarely call pai nt directly.
– Note: repaint schedules update to be run

– upda t e redraws the background and calls pai nt

● Use statements such as
g.se t Colo r (Co l or. r ed) ;

g.dr awLin e(0, 0, 5, 5) ; / / Dra w fr om 0, 0 to 5,5

23

How Does Everything Fit Together

● What you have to do:
– Decide on your basic input elements and text output

elements. I f the same elements are used twice, make
an extra class to store the common functionali ty.

– I f you are going to use graphics, make a new class
that extends Canvas .

– Pick a layout.

– Add your input components, text output
components, and extended canvas to the layout.

– Handle events; simplest way is to use a button.

24

Example Time

● A simple example that displays a shape in a
small canvas.

● Has several selection items.

● Example shows the same interface in two
places.

25

The Example
● Class GUI defines the basic GUI. I t provides a

constructor , implements Act ionL i sten er ,
and registers itself as the listener. So the GUI
instance catches the "Dr aw" button push.

● Class GUICa nvas extends Canvas and draws
the appropr iate shape. Provides a constructor ,
a paint routine, and a public method that can
be called from GUI 's event listener.

● Class Basic GUI provides a constructor , and a
main routine. I t builds a top-level frame that
contains a GUI .

26

Getting Info From The Input
● Choice or Li st : use getS elect edIt em.

Also available is get Selec t edI ndex . For
lists with multiple selections allowed, use
get Sele cted I tems or
get Sele cted I ndex es , which return arrays.

● TextFie l d: use getT ext (returns a
St r ing , which may need conversion to an
in t).

● Checkbo x : use getSt ate

● Info from the canvas is obtained by catching
the event, such as mouse click, mouse drag, etc.

27

Simple Layout Managers

● Make sure you use a layout; otherwise, nothing
will display.

● nul l : No layout: you specify the position. This
is lots of work and is not platform independent.

● Fl owLayout : components are inserted
hor izontally until no more room; then a new
row is star ted.

● Bor derL ayou t : components are placed in 1
of 5 places: " North" , " South" , " East" , " West" ,
or " Center" . You may need to create panels,
which themselves have Borde r Layo ut .

28

Fancy Layouts
● Car dLay out : Saves space; looks ugly in

AWT.
● Gri dLay out : Adds components into a gr id.

Each gr id entry is the same size.
● Gri dBagLayo ut : Adds components into a

gr id, but you can specify which gr id cells get
covered by which component (so components
can have different sizes).

29

Applets

● A piece of code that can be run by a java-
enabled browser .

30

Making an Application an Applet
● im port j ava . appl et.*

● Have the class extend Apple t .
– Appl et already extends Panel

– Typically just put a Panel inside of the Applet
and you are set.

– No main needed.
im port j ava . appl et.*;

public clas s Basi cGUIApple t ex t ends Appl et {

 publi c vo i d in i t() {

 add (new GUI()) ;

 }

}

31

HTML Stuff

● Need to reserve browser space by using an
<APPLET> tag.

● To run this applet, make an HTML file with
name Basi cGUIApplet . htm l and contents:

<HTML>

<BODY>

<H1>

Mar k's Appl et

</ H1>

<APPLET CODE=”Ba sicGU I Appl et.c l ass”

 wid t h=”6 00" h eight =”15 0">

</ APPLET>

</ BODY>

</ HTML>

32

Applet Initialization Methods

● The constructor
– called once when the applet is constructed by the

browser ’s VM. You do not have any browser
context at this point, so you cannot get the size of the
applet, or any parameters sent in the web code.

● in i t

– called once. Magically, pr ior to this call, you have
context in the browser . Put any initialization code
that depends on having context here. Many people
prefer to do all construction here.

33

Other “Applet Lifetime” Methods
● st art

– called by VM on your behalf when applet “ comes
into view.” The precise meaning of this is browser
dependent. Do not put any code that you would be
unhappy having run more than once.

● st op

– called by VM on your behalf when applet “ leaves
view.” The precise meaning of this is browser
dependent. Called as many times as start .

● destroy

– called by VM on your behalf when the applet is
being permanently unloaded

34

Polite Applets

● Lifetime methods should manage Applet’ s
background threads.

● Pattern #1: thread that lives as long as Applet
– init creates thread
– star t should star t/resume thread
– stop should suspend thread
– dest r oy should stop thread

● These all use deprecated thread methods.

35

Polite Pattern #2

● New thread each activation
– star t creates and star ts a thread
– stop stops and destroys a thread

● Use poll ing instead of deprecated method

36

Example of Polite Pattern #2
pr i vate Thr ead a nimat or = null ;

public void stop () {

 anim ator = nu l l;

}

public void star t () {

 if(anim ator == nu l l) {

 anim ator = new Thre ad(t his) ;

 anim ator. start ();

 }

}

public void run() {

 whi l e(anima t or ! = nul l)

 . ..

}

37

Applet Limitations

● An applet represents code that is downloaded
from the network and run on your computer .

● To be useful, there must be guarantees that the
downloaded applet isn't malicious (i.e. doesn't
create viruses, alter files, or do anything
tr icky).

38

Basic Applet Restrictions

● Network-loaded applets, by default, run with
ser ious secur ity restr ictions. Some of these are:
– No files may be opened, even for r eading

– Applets can not run any local executable program.

– Applets cannot communicate with any host other
than the or iginating host.

● I t is possible to grant pr ivileges to applets that
are trustwor thy.

● Wil l talk about Java secur ity in a few weeks.

39

Parameters

● Applets can be invoked with parameters by
adding entr ies on the html page:

<APPLET CODE="pr ogram. clas s" W I DTH=" 150" HEI GHT="150">

<PARAM NAME="Ini t ialC olor" VAL UE="B l ue">

</ APPLET>

● The applet can access the parameters with
publ i c St r ing getP aramet er(Strin g name)

40

Packaging The Applet

● Class file needs to be on the web server
– same directory as web page assumed

– can set CODEBASE in applet tag to change

● I f other classes are needed, they either have to
be on the web page too or available locally.
– if not found locally, new connection made to get

class (if not on web page, ClassNotFoundException)

– repeated connections expensive

– if lots of classes, should package in a jar file and use
ARCHIVE tag.

– jar files are compressed and download in one
connection

41

Creating Jar Files

● Can store images, class files, entire director ies.
– Basically a zip file

– Use command line tool (make sure jdk/bin is in the
PATH environment var iable)

 j ar cvf G UI.jar *.c l ass

● On web page,
<BODY>

<H1>

Mark ' s Applet

</H1 >

<APPLET code=" BasicGUIA pplet.cla ss" archiv e="GUI.ja r ”

 width= " 600" hei ght="150" >

</AP PLET>

</BODY>

</HT ML>

42

● Better , more flexible GUIs.
● Faster . Uses “ lightweight components”

● Automatic keyboard navigation
● Easy scrolling
● Easy tooltips
● Mnemonics
● General attempt to compete with WFC

● Can set custom look-and-feel

Why Swing?

43

Swing Components

● Usually star t with ‘J’:
● All components are lightweight (wr itten in

Java) except:
– JApplet

– JFrame

– JWindow

– JDialog

● AWT components have Swing analogs

44

AWT to Swing Mappings

● Almost all map by prepending a ‘J’
● Examples:

– Butt on -> J Button

– Panel -> J Panel

– List -> J List

● Exceptions:
– Checkbox -> J CheckBox (note case change)
– Choi ce -> J ComboBox

45

Some New Components
● JTr ee

– Creates a tree, whose nodes can be expanded.

– Vast, complicated class

● JTable

– Used to display tables (for instance, those obtained
from databases)

– Another enormous class

46

Big Difference Between Swing & AWT

● Components cannot be added to a heavyweight
component directly. Use get Cont entPa ne()
or se t Cont entP ane() .

● Example:
JFra me f = ne w JFrame(" Swing Fra me");

JPanel p = ne w JPanel() ;

p.ad d(new JB utton("Qu i t"));

f.se t ContentP ane(p);

--- OR (NOT PREFERRED) ---
Cont ainer c = f.getCont entPane() ;

c.ad d(new JB utton("Qu i t"));

47

Buttons, Checkboxes, etc
● Abstract class Abst r actB utto n covers all

buttons, checkboxes, radio groups, etc.
● Concrete classes include JBut ton ,

BasicAr r owButton , JToggl eButt on,
JCheckB ox , JRadi oBut ton .

● Can add images to buttons.
● Can set mnemonics (so alt-keys work)
Imag eIcon ico n=new Imag eIcon("qu i t.gif");

JBut t on b = n ew JButton ("Quit", i con);

b.se t Mnemonic ('q');

48

Tooltips
● Use setT oolT i pTex t to install a tooltip.
● Works for any JComponent .
Jb utton b = new Jbutt on(" Quit ");

b. setTo olTi pText ("Pre ss t o qui t ");

49

Borders
● Use setB orde r to set borders for a

JComponent .

● Available borders include
– Titl edBorder

– Etch edBorder

– Line Border

– Matt eBorder

– Beve l Border

– Soft BevelBord er

– CompoundBorde r

● In package ja vax.s wing . bord er

50

Popup Menus and Dialogs

● JPopupMenu

– Appears when you r ight-click on a component

● JOption Pane

– Contains static methods that pop up a modal dialog.
Commonly used methods are:

showMessageDialog()

showConfirmDialog()

showInputDialog()

51

Sliders
● Sliders are implemented with the JSli der

class.
● Impor tant methods:

JSl ider (in t ori ent, i nt l ow, i nt h i gh, i nt val) ;

vo i d se t Val ue(i nt va l);

in t get Valu e();

vo i d se t Pai ntTic ks(b oolea n makeTic ks);

vo i d se t Maj orTic kSpac i ng(i nt n);

vo i d se t Min orTic kSpac i ng(i nt n);

● ChangeL i ste ner inter face handles slider
events. Must implement state Chang ed
method. Note: this inter face is in package
ja vax.s wing . even t .

52

Progress Bars
● JPr ogre ssBar displays data in relative

fashion from empty (default value=0) to full
(default value=100).

● Interesting methods
doub l e getPer centComple t e();

int getValue();

void setValue (int val) ;

53

Scrolling
● Use a JScrol l Pane to wrap any Component.

● Scrolli ng will be automatically done.

● Example:
JPanel p = ne w JPanel() ;

JLis t list = new JList();

for(int i = 0; i < 100 ; i++)

 l ist.addI t em("" + i);

p.ad d(new JS crollPane(list)) ;

54

Look-and-feel

● Used to give your GUIs a custom look.
Curr ently there are three options:
– Metal (platform independent)

– Windows

– Motif (X-windows, for Unix boxes)

● Use static method setLoo kandFeel in
UI Manag er to set a custom look and feel.

st atic Stri ng mo t ifCl assName =

 "com . sun . java . swin g.pla f .mo t if.M otifL ookAndFee l ";

tr y { U I Manager. setLo okAndFeel (moti f Clas sName); }

ca t ch(Unsu pport edLoo kAndFeelE xcept i on e xc)

 { Syst em.out.pr i ntln ("Un supported Look and Feel "); }

55

Other Stuff (There's Lots)
● JFi leCh oose r : supports file selection
● JPasswor dFi eld : hides input

● Swing 1.1.1 Beta 2 makes many components
HTML-aware. Can do simple HTML
formatt ing and display

● JTextPa ne: text editor that suppor ts
formatt ing, images, word wrap

● Spr ings and struts
● Automatic double-buffer ing

● General attempts to be competitive with WFC

56

Summary

● AWT is more por table; Swing is better looking
● Event handling uses delegation pattern

– listeners register with components

– event sent to all li steners

– listeners implement an interface

– listeners should finish quickly or spawn a thread

● Applets are just components
– lifetime methods manage threads
– context not set until i nit is called

– applets run with secur ity restr ictions

57

Summary continued

● Most old AWT is easily translated:
– Add J in front of the class names
– Remember to have JFrame call setC ontentPan e

● Swing has easy-to-use new stuff including
tooltips, mnemonics, borders, JOpt ionP ane .

