
C Programming

Mark Allen Weiss

Copyright 2000

Outline

● Overview of C
● Functions
● C-style Pointers
● Preprocessor
● Arr ays

● Str ings
● structs
● I /O
● Mixing C and C++

C Basics

● High-level assembler language
– basic constructs of high-level languages
– ports to many machines
– allows access to system resources ala assembler

● 1970s language philosophy
– assumes the programmer knows best

● relatively few compiler checks
● relatively few runtime checks

– loose type checking
– not object-or iented or even object-based

Versions Of C

● Original K& R C (1970s)
– Spec is ambiguous in come places

● ANSI C (1988)
– Attempts to clean up or iginal spec
– Attempts to codify some programming tr icks
– Adds notion of the function prototype
– The version to program to

● Non-standard C
– many compilers add features; can turn off

extensions with compiler options

● C99

Similarity

● Same set of pr imitive types
– shor t, int, long, unsigned, signed, float, double, char
– no boolean in ANSI C (0 is false, non-zero is true)

● Same set of operators
– ar ithmetic, relational, equality, logical, bitwise, ?:,

and assignment operators all the same

● Same types of loops and statements
– for , while, do, switch, break, continue, return

What ANSI C is Missing vs. C++

● Classes and object-based programming
● first-class array and str ing types
● Strong(er) type checking
● Reference variables and call -by-reference
● Function and Operator over loading

● templates
● exceptions
● default parameters
● various nice coding benefits present in C++
● no / / comments

Printing to Terminal
● Use pr i nt f to pr int a str ing.

● Inside str ing use % escapes to add parameters:
– int %d
– reals %f
– characters %c
– other str ings %s

● pr i nt f is not type-safe

● Example
i nt x = 37;

doubl e y = 56. 56;

pr in t f("Th e i nt x i s %d. T he double y i s %f", x, y) ;

Functions

● Same ideas as in C++
● Var iables must be declared at the start of the

function
– once you have a non-declaration statement, cannot

declare any more local var iables

● No overloading allowed

● No inline declarations allowed
● All parameters are passed call-by-value: no

exceptions

● Prototypes, ala C++ are allowed but not
required

Simulating Call By Reference

● Same idea as Java, actually!
● Pass a pointer as a parameter to a function

– cannot change value of the pointer
– can change state of the object being pointed at

● Function declares that it is receiving a pointer
● Dereference pointer with * (just like C++)

● Pass a pointer as the actual argument
– I f you have an object, can get its address with

address-of-operator (&)

Swapping Example
#i nc l ude <st di o.h >

void sw ap(i nt * x, i nt * y) {

 in t t mp = *x ;

 *x = * y;

 *y = t mp;

}

i nt mai n(v oid) {

 in t a = 5 , b = 7;

 sw ap(&a, &b); / * must pas s t he addr ess */

 pr i nt f (" %d %d\ n", a, b) ;

 re t ur n 0;

}

Reading From Terminal
● Use sc anf to read (return value is # items read)

– Inside controlling str ing use % escapes for each
parameter :

● ints %d, %ld, etc.

● reals %f, %lf, etc.

– Pass addresses of var iables to be filled in

● scanf is not type-safe

● Example
i nt x;

doubl e y;

i nt i te msRead;

i t emsRead = sc anf (" %d %lf" , &x, &y) ;

Preprocessor Macros

● Preprocessor directives begin with #
– #i nc l ude, #defi ne, #i fn def , #el se , #endif ,

#undef , #i f , #el se, etc.
– long lines can be continued with \

● Same set as in C++, but used much more often
in C

● Preprocessor macros per form textual
substitution (logically before) program is
compiled

Simple Textual Substitution
 # def i ne MAX 5 0

 # def i ne SUMAB a + b

this text
 i f (x = = MAX)

 c = S UMAB * SU BAB;

becomes
 i f (x = = 50)

 c = a + b * a + b ;

● Moral of the story: always overparenthesize

Trivial Functions

● Used in C for speed
i nt abs olut eVal ue(i nt x)

{

 re t ur n x >= 0 ? x : - x;

}

● Above function is tr ivial, but overhead of
function call could be significant
– 70s compilers not very good at that
– tendency of programmers to inline functions

themselves yields bad software engineering
– modern compilers are very good at inlining; even so,

often see macros used instead of functions

Parameterized Macros

● Macro expansion: textual substitution, with
actual arguments directly substituted for
formal parameters

#define abs olute Value (x) ((x) >=0 ? (x) : -(x))

y = abs olut eValu e(a-3) ;

z = abs olut eValu e(--n) ;

● becomes
y = ((a-3) >=0 ? (a- 3) : -(a-3)) ;

z = ((- -n) >=0 ? (-- n) : -(- -n)) ;

● Parameter ized macros ARE NOT semantically
equivalent to function calls.
– arguments may be evaluated multiple times.

Arrays

● Not first-class arr ay type in C
in t a[20] ;

in t *b; // allo cate some memor y el sewher e

● Like C++
– array value is a pointer to memory
– indexing star ts at zero
– no bounds check
– array value does not have any idea of how large the

array is, except in case where array is allocated
using [] syntax

– memory is not reclaimed, except in case where array
is allocated using [] syntax

Passing Arrays
● Use either [] or * in function declaration

– [] follows type name

● Use co nst to indicate that state of the arr ay
will not change

● Pass the array (i.e. the pointer to the start)
● Probably have to pass the number of items too
/* Decl arat i ons * /

vo i d pr i ntI t ems(cons t int *ar r , in t n) ;

vo i d in i tia l ize(int arr[] , in t n) ;

● Size in [] is ignored

● Cannot return arr ay objects -- only pointers

Allocating and Deallocating
● Must use mal l oc to allocate array if its size is

not known at compile time or you want to
change size as program runs
– not type-safe; returns a void*

– returns NULL if no memory

● Must use f re e to deallocate any memory that
was allocated by mal l oc

● Can use r eal lo c to increase amount of
memory allocated for an array; it obtains more
memory, copies items over, and frees or iginal
– Parameters to mal l oc and r eal lo c are #bytes of

memory to obtain

Sample Reallocating Code
/* R eturns a p ointer to the data */

/* i t emsRead i s set by r eference to #items read */

int * getInts(int * it emsRead) {

 in t numRead = 0, arra ySize = 5 , inputVal ;

 in t *array = malloc(sizeof(i nt) * arr aySize);

 if (array == NULL)

 r eturn NUL L;

 pr i ntf("Ent er any nu mber of i ntegers: ");

 wh i le(scanf ("%d", & i nputVal) == 1) {

 i f(numRea d == arra ySize) { /* Array Doubling Code */

 arraySiz e *= 2;

 array = r ealloc(array, si zeof(int) * array Size);

 if(arra y == NULL)

 return NULL;

 }

 array[num Read++] = inputVa l ;

 }

 *i t emsRead = numRead;

 re t urn reall oc(array , sizeof(int) * n umRead);

}

Multidimensional Arrays

● Very messy to do fancy stuff
● I f you know dimensions, it is easy
in t x[4] [7] ; // decl ares 4x7 array

● Formal parameters must include all dimensions
except the first may be omitted

vo i d pr i nt(int y[][7] , in t numRows);

Pointer Math
● Given a pointer p, ++p changes the value of the

pointer to point at an object stored one unit
higher in memory

● I f p is pointing at an object in an arr ay,
– ++p points at the next object
– p+k points at the object k away
– p1-p 2 is the separation distance of two objects in

an arr ay

● Gives a 70s style idiom for traversing an array
● Most optimizing compilers make this idiom

obsolete, but you will see it anyway

Two ways of initializing an array
vo i d in i tia l ize1 (int arr[] , i nt n)

{

 i nt i ;

 f or(i = 0; i < n; i ++)

 arr [i] = 0 ;

}

vo i d in i tia l ize2 (int arr[] , i nt n)

{

 i nt * endMarker = ar r + n ;

 i nt * p = arr;

 while (p ! = en dMark er)

 *p+ + = 0;

}

Characters
● Use put char to pr int a single character
● get char to read a single character

– returns an in t , EOF if end of f ile

● <ct ype.h > contains var ious character testing
routines such as is di git , i sal pha, etc.
These are all macros. Also contains t oupper
and t ol ower .

Strings
● Represented as an array of ch ar

● After last character in str ing, there is a null
terminator '\ 0'
– placed there automatically for constants
– placed there automatically by library routines

● Str ing library routines:
– st rl en: returns length of str ing (' \ 0' not included)
– st rc mp: compares two null-terminated str ings;

same semantics as Java’s co mpar eTo function
– st rc py : copies second parameter into first; must

be enough arr ay space in first parameter or you can
get in trouble

The Problem With C Strings

● Very common to have buffer over flow
problems
– array allocated for str ing is not large enough
– need to remember null terminator
– cannot assume limits on input line length, etc.

● Common error
ch ar *c opy;

ch ar or i g[] = "h ello" ; // six char acter arr ay

st r cpy(cop y, or i g); // cra shes: no memory

spri ntf and ss canf

● Similar to str ingstreams in C++
● First parameter to sp r i nt f is a str ing in

which to wr ite (instead of file or terminal)
● First parameter to ss canf is a str ing to parse
in t x;

double y;

in t ite ms = ssca nf(" 37 46 . 9", &x, &y);

Arrays of Strings
● Typically declared as char * ar r []
co nst c har * ERRORS[] = { " Out of memory " ,

 " Inpu t va l ue o ut of rang e", " Format er r or" ,

 " Prematur e end of i nput" };

● Example is parameter to mai n
#i nclud e <st dio. h>

in t mai n(i nt ar gc, c har * argv [], c har * envp [])

{

 i nt j ;

 print f (" ENVIRONMENT\n") ;

 f or(j = 0; en vp[j] != N ULL; j++)

 p r int f ("% s\n", envp [j]);

}

C Pointer Dangers

● Returning a pointer to a static function
variable
– Must use value of object being pointed at pr ior to

next call to the function or it is overwritten

● Returning a pointer to a local var iable
– Always wrong; local var iable likely to be destroyed

and you have a stale pointer

● Returning a pointer to a dynamically allocated
local object
– You must take responsibili ty for calling fr ee or

you have a potential memory leak

Structures (str uct s)

● Precursor to C++ classes
– no methods or constructors
– no pr ivate -- everything is public
– have to say st r uc t when using type

● K& R C: cannot pass or return a struct
● ANSI C: OK to pass or return a struct

– but if st r uc t is large, this is not a good idea, since
it involves a copy

● Structs are almost never passed to or r eturned
from functions. Instead pointers to structs are
used

Example: time.h
stru ct tm {

 in t tm_s ec; /* seconds after the minute (0 - 61) */

 in t tm_mi n; /* minutes after the hour (0 - 59) */

 in t tm_h our; /* hours af t er midnig ht (0 - 23) */

 in t tm_mday; /* day of t he month (1 - 31) */

 in t tm_mon; /* month si nce Januar y (0 - 11) */

 in t tm_y ear; /* years si nce 1900 (0 -) */

 in t tm_wday; /* days sin ce Sunday (0 - 6) */

 in t tm_y day; /* days sin ce January 1 (0 - 365) */

 in t tm_i sdst; /* daylight savings t i me flag */

};

type def long time_t;

/* S ome functi ons */

exte r n time_t mktime(st r uct tm *) ;

exte r n char *a sctime(co nst struc t tm *);

Illustration of Passing Structs
/* Find all Frid ay Th e 13t h bi r thda ys fo r per son born Nov 1 3, 19 73 */

#i nclud e <t i me.h >

#i nclud e <st dio. h>

in t mai n(v oid) {

 const int FRID AY = 6 - 1 ; /* Sunda y Is 0, e t c... */

 struc t tm theT i me = { 0 } ; /* Set a l l f i elds To 0 */

 i nt y ear;

 t heTi me.t m_mon = 11 - 1; /* Janua r y i s 0, etc.. . */

 t heTi me.t m_mday = 1 3; /* 13th day of th e mont h */

 f or(year = 19 73; y ear < 207 3; ye ar++) {

 the Time . tm_y ear = year - 1 900; /* 1900 i s 0 , etc . .. * /

 if(mkt i me(&theT i me) == - 1) {

 p r int f ("m ktime fail ed i n %d\n", y ear) ;

 b r eak ;

 }

 if(the Time. t m_wday == FRI DAY)

 p r int f ("% s", a sctim e(&t heTi me)) ;

 }

 r etur n 0;

}

Pointers to Functions

● Can pass functions as parameter to other
function
– technically you pass a pointer to the function
– syntax can look clumsy, but in ANSI C can avoid

clumsy syntax
doubl e deri vat i ve (doubl e f (doubl e) , double x) {

 do ubl e del ta = x / 10 00000;

 re t ur n (f (x + de l ta) - f(x)) / del t a;

}

i nt mai n(v oid) {

 pr i nt f (" Der i v i s %f\ n", der i va t iv e(sqr t , 1 . 0)) ;

}

Equivalent Code With Pointers
doubl e deri vat i ve (doubl e (*f) (do ubl e) , doubl e x) {

 do ubl e del ta = x / 10 00000;

 re t ur n ((*f) (x + de l ta) - (* f)(x)) / d elt a;

}

i nt mai n(v oid) {

 pr i nt f (" Der i v i s %f\ n", der i va t iv e(sqr t , 1 . 0)) ;

}

Pointers to Functions as Fields
void he l p(voi d) ;

void qu i t(voi d) ;

st ru ct Command {

 ch ar * command;

 vo i d (*f unc)(vo i d) ;

} ;

st ru ct Command th eCommands[] = {

 "e xit " , q uit ,

 "h elp " , h elp ,

 "q uit " , q uit ,

 /* et c. * /

 NULL, NUL L /* Pl ace la st; No mat ch * /

} ;

Using the Pointers
void do Command(cons t char * co mm) {

 st r uc t Command * pt r ;

 fo r (ptr = t heCommands; p t r- >co mmand ! = NULL; pt r+ +)

 i f(str cmp(comm, pt r-> command) == 0) {

 (*pt r -> f unc) () ;

 r etur n;

 }

 pr i nt f (" Err or: un r ec ogni zed co mmand\ n") ;

}

void he l p() {

 pr i nt f (" Her e's my he l p!\ n") ;

}

void qu i t() {

 ex i t(0) ;

}

qsort

● Generic sor ting algorithm
void qs ort(vo i d * ar r , i nt n, i nt it emSi ze ,

 in t cmp(con st voi d * , cons t vo i d *));

● Typical of how generic stuff is done in C
● Example: sor ting array of ints:

int arr[] = { 3, 5, 1, 2, 6 };

qsor t (arr, 5, sizeof(i nt), in t Cmp)

where comparison function is
int i ntCmp(co nst void * lhs, con st void *r hs)

{

 in t lhint = * (const i nt *)lhs;

 in t rhint = * (const i nt *)rhs;

 re t urn lhint < rhint ? -1 : lh i nt > rhin t ;

}

Files

● Associate a stream with a file
● Stream represented by a FILE object, defined

in stdio.h
– these objects are passed using pointers
– Various routines to read/wr ite; all star t with f
– can be opened for reading or wr iting or both

● Standard streams are st di n, st dout , and
st der r

Important Routines
● f open and f cl ose

– open with a mode such as “ r ” or “ w”
– fopen returns FI LE * ; NULL if error

● f pr i nt f and f scanf

– work just like pr intf and scanf
– first parameter is a FILE *

● f get c and f put c

– work like getchar and putchar
– last parameter is a FILE *
– often implemented as a preprocessor macro

More Routines
● f get s and f put s

– Reads/wr ites str ings
– fgets reads a line or input, with a limit on number of

characters
● newline included in str ing if it was read
● make sure you have enough space for newline and ‘ \0’

● f eof

– returns true if read has already failed due to EOF

● f r ead and f wr i t e

– Allows reading of binary data into a struct or arr ay

● f seek and f t el l

– Allows random access of f iles

Example: File Copy: part 1
int copy(cons t char *d estFile, const char *sourceF i le) {

 in t charsCou nted = 0, ch;

 FI LE *sfp, * dfp;

 if (strcmp(sourceFil e, destFi l e) == 0) {

 printf("C annot cop y to self \ n");

 r eturn -1;

 }

 if ((sfp = f open(so urceFile, "r")) = = NULL) {

 printf("C annot ope n input f i le %s\n", sourceFi l e);

 r eturn -1;

 }

 if ((dfp = f open(de stFile, " w")) == NULL) {

 printf("C annot ope n output f ile %s\n" , destFil e);

 f close(sf p); retu r n -1;

 }

Part 2: Character at a Time
 wh i le((ch = getc(s f p)) != EOF)

 i f(putc(ch, dfp) == EOF)

 {

 printf(" Unexpect ed error during wri t e.\n");

 break;

 }

 else

 charsCou nted++;

 fc l ose(sfp) ;

 fc l ose(dfp) ;

 re t urn chars Counted;

}

File Copy: Line at a Time
#def i ne MAX_LI NE_LEN 25 6

int copy(cons t char *d estFile, const char *sourceF i le)

{

 in t charsCou nted = 0;

 ch ar oneLine [MAX_LINE_LEN + 2];

 FI LE *sfp, * dfp;

 // ... same start

 wh i le((fge t s(oneLi ne, MAX_L I NE_LEN, s f p)) != NULL)

 i f(fputs(oneLine, dfp) < 0) {

 printf(" Unexpect ed error during wri t e.\n");

 break;

 }

 else

 charsCou nted += s t rlen(on eLine);

 // ... same f inish

}

Example: Printing Last Chars in File
void printLast Chars(co nst char * fileName, int howMany) {

 FI LE *fp;

 ch ar *buffer = NULL;

 in t charsRea d, fileSi ze;

 bu f fer = mal l oc(howM any); / * error c heck omit t ed */

 fp = fopen(f ileName, "rb"); / * error c heck omit t ed */

 fs eek(fp, 0 , SEEK_END); / * go to e nd */

 fi l eSize = f t ell(fp) ; / * get pos i tion */

 if (fileSize < howMan y)

 howMany = f ileSize;

 fs eek(fp, - howMany, SEEK_END);

 ch arsRead = f read(bu f fer, 1, howMany, f p);

 fw r ite(buff er, 1, ch arsRead, stdout);

 fc l ose(fp) ;

 fr ee(buffer);

}

Should I Use C

● Good reasons to not write C code
– have to manage your own memory for ar rays and

str ings
– var iables must be declared at top of function
– I /O is much messier than C
– no over loading
– no classes or templates
– no type checking

● Reason to use C
– might be faster
– might need to inter face to C library

Calling C From C++

● Best solution: wr ite most of your code in C++
● Most C and C++ compilers are the same, so

li ttle speed benefits
● From C++, can access C routines if magic

incantation provided:
– extern “ C” ...
– may need to change search path to find include and

library files
– entire C library is par t of C++

Example

● Suppose there is a C routine
void fo o(SomeObj *o bj) ;

● From C++:
exte r n " C" voi d f oo(SomeObj * obj);

i nt mai n()

{

 SomeObj * p = .. . ;

 .. .

 fo o(p);

}

Using C in Your C++ Code
● I /O using FI LE * is generally much faster

than using i fs t r eam and of str eam

● Direct access of characters in a st r i ng might
be faster using char * . Can get char * from a
st r i ng using c_s t r member function
– or may need to use char * to save space in some

cases

● Don’t :
– mix C and C++ streams
– mix new/del et e and mal lo c/f r ee

– forget that you probably have to pass structs using
pointers or addresses

Summary

● With C you lose many of C++ conveniences
such as
– str ings/vectors
– type safety
– ease of var iable declarations

● C is not object-or iented, or even object-based
● I f you have to wr ite C, you will miss C++

● I f possible, wr ite C++, and minimize use of C-
style logic

