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Basic OO Principles

● Objects are entities that have structure and
state. Each object defines operations that may
access or manipulate that state.

● An object is an atomic unit: I ts parts cannot be
dissected by the general users of the object.

● Information hiding makes implementation
details, including components of an object
inaccessible.

● Encapsulation is the grouping of data and their
operations to form an aggregate, while hiding
the implementation of the aggregate.
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Classes in Java

● A class consists of members. The two kinds of
members are:
– Data members

– Functions that act on the data members

● Members (both data and functions) can be
public or pr ivate (or three other things,
descr ibed later ).

● Unlike C++, there is no separation of interface
and implementation.

● Example: IntCell.java.
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Using an Object

● Objects are always accessed by referenced
var iables.

● Objects are defined by using new. This is (more
or less) the only way! Example:

IntCell m = new IntCell( );

● Note parentheses (different than old C++).
● Some objects are defined with additional

parameters; this is controlled by the
constructor (s) for the object (as in C++).

● = for objects is a reference assignment.
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Applying Methods

● A method is a class function that is applied to
an object. (The C++ term is member function).

● Use the . operator to select a member :
m.write( 5 );

int n = m.read( );

● Private methods may not be selected by a
method from another class. Public methods
may be selected from anywhere. (The default, if
you don’t specify public or pr ivate, is
somewhere between public and pr ivate).
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Initialization of Fields

● Fields can be initialized inline
● Can use obscure initializer block
● Can use constructors
● I f none of these are done, fields will get

defaults:
– 0 for pr imitives

– false for boolean
– ‘ \0’ for char

– null for references
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Constructors

● Constructors are called when, and only when, a
new object is allocated via a call to new.

● Constructors generally should be public.
● Like C++: no return type, and the name is the

class name. THERE'S A COMM ON BUG!

● Constructors can be over loaded
● No initializer lists or copy constructors needed.
● A default zero-parameter public constructor is

generated only if no other constructor is
provided.
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this
● this refers to the cur rent object.
● A second use of this is for constructors.

Example:
class Date

{

    public Date( int m, int d, int y )

      {  month = m; day = d; year = y; }

    public Date( int y ) { this( 1, 1, y ); }

    public Date( )       { this( 2001 ); }

    // private members month, day, year below

}
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Destructors

● No destructors. Objects are garbage collected
as needed.

● There is a procedure called finalize, as in
Ada95. I t is called immediately before garbage
collection, BUT: when garbage collection
occurs is non-deterministic. MORE ON THIS
LATER IN THE COURSE.

● I f resources are scarce, you have to clean up
your own mess. For example, you may have to
close files yourself.
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Constant Things

● No constant member functions. Everything
may alter the object.

● Java conventions:
– getMember: an accessor
– setMember: a mutator

● Instance fields can also be marked as final.
– Must set value by end of all paths through all

constructors
– Cannot change value after constructor call
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Class-Wide Things: static Members

● Like C++
● A static member (either data or function)

applies to the class, rather than a particular
instance of the class.

● In the example below, each Junk object has its
own x. But there is only one shared y.

class Junk

{

        private int x;

        static private int y;

}
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Initialization of Static Data

● Static data is initialized once, when class is first
loaded (pr ior to creation of any objects of the
class type).

● Cannot try to initialize static data in
constructors -- too late; may not even be
allowed to call constructors.

● Initialize fields either
– inline when declared (if simple)

– in static initializer (if complex)
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Static Functions

● Same as static data: a controlli ng object is not
needed:

Integer.toString( 3 )

● Some classes have static methods only
– provides a convenient location for logically global

functions.

– Often have pr ivate constructor
– Examples:

● Math

● System
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C++ Stuff Not In Java

● No destructors
● No implicit conversions via constructors
● Friends work differently
● No worrying about copy constructor and
operator=

● Public/pr ivate is on a function by function
basis.

● No separation of inter face and implementation.
● Members automatically 0 for pr imitives, null

for references (this is kind of in new C++)
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Packages

● Used to organize classes. Classes in same
package can have “ fr iendly visibili ty,” which is
default if no public/pr ivate.

● Place at the top of the source file, before the
code that defines the class, the statement

package PackageName;

● Classes in the package must be public to be
used outside of the package

● All files of a package must be in a subdirectory
that matches the full package name, visible
from the CLASSPATH
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Using Packages

● Use the import statement to use a package.
● Packages are searched for in director ies that

are branched off any directory named in the
CLASSPATH var iable.

● CLASSPATH almost always includes ., so:
– In the main directory that you will work in,

● Create a subdirectory that will store the various classes in
the package

● Place test programs in the main directory
● Have the test programs impor t the package if you want the

shor thand
● I f you change main director ies, modify CLASSPATH.
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Package Visibility

● Default visibili ty is package visible
● Packages are open-ended; anyone can join
● Package visibili ty is insecure and should be

avoided if possible
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Import Directives

● Allows class name to be used as a shor thand for
the complete class name (that includes the
package)

● Two forms:
– import java.io.FileInputStream;  // One shor thand

– import java.io.* ;                          // Lots of shor thands

● Packages do not include each other; neither do
wildcard imports
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javadoc

● Automatically (more or less) generates
documentation from the source code.

● Makes it easy to have consistent
documentation.

● Removes the need for package specification
(class inter face).

● Guarantees uniform documentation.
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Comments

● First, prepare files for  javadoc by using /**
commenting conventions.

● Comment packages, classes, public members,
and throw exceptions.

● Can add other info: return values, meaning of
parameters, author names, version numbers,
etc..

● Then run javadoc. Var ious html pages are
generated. (Without commenting, you still get
pages with function prototypes).
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Next Time

● Inher itance
● Exceptions
● Inter faces?


