
8/30/00 1

Objects and Classes

Mark Allen Weiss

Copyright 2000

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 2

Basic OO Principles

● Objects are entities that have structure and
state. Each object defines operations that may
access or manipulate that state.

● An object is an atomic unit: I ts parts cannot be
dissected by the general users of the object.

● Information hiding makes implementation
details, including components of an object
inaccessible.

● Encapsulation is the grouping of data and their
operations to form an aggregate, while hiding
the implementation of the aggregate.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 3

Classes in Java

● A class consists of members. The two kinds of
members are:
– Data members

– Functions that act on the data members

● Members (both data and functions) can be
public or pr ivate (or three other things,
descr ibed later).

● Unlike C++, there is no separation of interface
and implementation.

● Example: IntCell.java.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 4

Using an Object

● Objects are always accessed by referenced
var iables.

● Objects are defined by using new. This is (more
or less) the only way! Example:

IntCell m = new IntCell();

● Note parentheses (different than old C++).
● Some objects are defined with additional

parameters; this is controlled by the
constructor (s) for the object (as in C++).

● = for objects is a reference assignment.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 5

Applying Methods

● A method is a class function that is applied to
an object. (The C++ term is member function).

● Use the . operator to select a member :
m.write(5);

int n = m.read();

● Private methods may not be selected by a
method from another class. Public methods
may be selected from anywhere. (The default, if
you don’t specify public or pr ivate, is
somewhere between public and pr ivate).

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 6

Initialization of Fields

● Fields can be initialized inline
● Can use obscure initializer block
● Can use constructors
● I f none of these are done, fields will get

defaults:
– 0 for pr imitives

– false for boolean
– ‘ \0’ for char

– null for references

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 7

Constructors

● Constructors are called when, and only when, a
new object is allocated via a call to new.

● Constructors generally should be public.
● Like C++: no return type, and the name is the

class name. THERE'S A COMM ON BUG!

● Constructors can be over loaded
● No initializer lists or copy constructors needed.
● A default zero-parameter public constructor is

generated only if no other constructor is
provided.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 8

this
● this refers to the cur rent object.
● A second use of this is for constructors.

Example:
class Date

{

 public Date(int m, int d, int y)

 { month = m; day = d; year = y; }

 public Date(int y) { this(1, 1, y); }

 public Date() { this(2001); }

 // private members month, day, year below

}

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 9

Destructors

● No destructors. Objects are garbage collected
as needed.

● There is a procedure called finalize, as in
Ada95. I t is called immediately before garbage
collection, BUT: when garbage collection
occurs is non-deterministic. MORE ON THIS
LATER IN THE COURSE.

● I f resources are scarce, you have to clean up
your own mess. For example, you may have to
close files yourself.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 10

Constant Things

● No constant member functions. Everything
may alter the object.

● Java conventions:
– getMember: an accessor
– setMember: a mutator

● Instance fields can also be marked as final.
– Must set value by end of all paths through all

constructors
– Cannot change value after constructor call

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 11

Class-Wide Things: static Members

● Like C++
● A static member (either data or function)

applies to the class, rather than a particular
instance of the class.

● In the example below, each Junk object has its
own x. But there is only one shared y.

class Junk

{

 private int x;

 static private int y;

}

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 12

Initialization of Static Data

● Static data is initialized once, when class is first
loaded (pr ior to creation of any objects of the
class type).

● Cannot try to initialize static data in
constructors -- too late; may not even be
allowed to call constructors.

● Initialize fields either
– inline when declared (if simple)

– in static initializer (if complex)

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 13

Static Functions

● Same as static data: a controlli ng object is not
needed:

Integer.toString(3)

● Some classes have static methods only
– provides a convenient location for logically global

functions.

– Often have pr ivate constructor
– Examples:

● Math

● System

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 14

C++ Stuff Not In Java

● No destructors
● No implicit conversions via constructors
● Friends work differently
● No worrying about copy constructor and
operator=

● Public/pr ivate is on a function by function
basis.

● No separation of inter face and implementation.
● Members automatically 0 for pr imitives, null

for references (this is kind of in new C++)

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 15

Packages

● Used to organize classes. Classes in same
package can have “ fr iendly visibili ty,” which is
default if no public/pr ivate.

● Place at the top of the source file, before the
code that defines the class, the statement

package PackageName;

● Classes in the package must be public to be
used outside of the package

● All files of a package must be in a subdirectory
that matches the full package name, visible
from the CLASSPATH

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 16

Using Packages

● Use the import statement to use a package.
● Packages are searched for in director ies that

are branched off any directory named in the
CLASSPATH var iable.

● CLASSPATH almost always includes ., so:
– In the main directory that you will work in,

● Create a subdirectory that will store the various classes in
the package

● Place test programs in the main directory
● Have the test programs impor t the package if you want the

shor thand
● I f you change main director ies, modify CLASSPATH.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 17

Package Visibility

● Default visibili ty is package visible
● Packages are open-ended; anyone can join
● Package visibili ty is insecure and should be

avoided if possible

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 18

Import Directives

● Allows class name to be used as a shor thand for
the complete class name (that includes the
package)

● Two forms:
– import java.io.FileInputStream; // One shor thand

– import java.io.* ; // Lots of shor thands

● Packages do not include each other; neither do
wildcard imports

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 19

javadoc

● Automatically (more or less) generates
documentation from the source code.

● Makes it easy to have consistent
documentation.

● Removes the need for package specification
(class inter face).

● Guarantees uniform documentation.

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 20

Comments

● First, prepare files for javadoc by using /**
commenting conventions.

● Comment packages, classes, public members,
and throw exceptions.

● Can add other info: return values, meaning of
parameters, author names, version numbers,
etc..

● Then run javadoc. Var ious html pages are
generated. (Without commenting, you still get
pages with function prototypes).

Wednesday, August 30, 2000 Copyright 1996, 1999, M. A. Weiss 21

Next Time

● Inher itance
● Exceptions
● Inter faces?

