
� � �

� � � � � � � 	

The recently adopted C++ Standard requires all i mplementations to provide a
supporting library known as the Standard Template Library (known simply as the
STL). The STL provides a col lection of data structures (such as l ists, stacks,
queues, and priority queues), and algorithms (such as sorting and selection). As
its name suggests, the STL makes heavy use of templates, including advanced
template features that do not work on many current compil ers (and which we
have therefore elected not to discuss in this text). As a result, at the time of this
writing, there are no completely correct implementations of the STL, although it
is certain that correct implementations will appear. It is interesting to examine the
STL because it i l lustrates many of the concepts that have been explored in this
text. We will also see that even though the data structures package developed in
this text has only basic methods, using it is very similar to using a more robust
package, such as the STL.

In this Appendix, we

• describe the organization of the STL, and its integration with the rest of
the language

• examine its lists, sets, and maps
• provide a C++ programs that uses the STL

�
 � � � � � � � � � � �

The STL contains implementations of some of the data structures that have been
described in this text. Specificall y, there is a doubly-li nked li st class, with an
associated iterator, priority queues, and data structures that make use of balanced
search trees. As expected, the functionality of these classes is somewhat different
than the classes written in this text; however the basic concepts, algorithms, and
running times are the same. The STL does not provide a hash table data structure
or a union/find data structure. There is a binary search algorithm and a quicksort
algorithm.

STL.mkr Page 1 Wednesday, June 3, 1998 10:28 AM

Because the STL is part of the C++ library, it is likely to undergo extensive
testing and optimization, and have survived use by legions of programmers
around the world. Thus, in general, it will be preferable to use it, rather than pro-
vide an alternate implementation.

Complete coverage of the STL fil ls a textbook. In this appendix, we restrict
our attention to a small subset that includes the basics of the STL.

�
 � � � � � � � � � � � � � � � �

This section describes the basics of the STL, including the new header files, the
using directive, containers and iterators, pairs, and function objects.

� � � ! " # $ % # & ' () # * $ + % , - #
using . (& # / 0 (1 #

Historically, the names of library header files have ended with the . h suff ix. The
new standard mandates that these names are now suffix-free. Thus, the standard
I/O header file is now i ostr eam, instead of i ostr eam. h. Many implemen-
tations will continue to provide an i os t r eam. h header file. However, this file
may not be compatible with the STL version. In Visual C++ 5.0, for instance,
you cannot use iostream.h if you use any of the STL header fil es. Some of
the other header files are f st r eam, sst r eam, vect or , l i s t , deque, set ,
and map.

The newly adopted standard also adds a new feature called the namespace.
Although namespaces are important in their own right, we do not discuss their
use here. It is important to know, however, that the entire STL is defined in the
st d namespace. To access the STL as if it were in the global namespace we pro-
vide a using directive, which in this case is:

usi ng namespace st d;

Although there are other alternatives, which can be found in recent C++
books, this is the simplest. Figure A.1 illustrates the new i os t r eam header file
and the usi ng directive.

� � � 2 3 + 0 $ (+ # & *

A container represents a group of objects, known as its elements. Some imple-
mentations, such as vectors and li sts, are unordered; others, such as sets and
maps are ordered. Some implementations allow duplicates, others do not. All
containers support the following operations.

STL.mkr Page 2 Wednesday, June 3, 1998 10:28 AM

� � 4

bool empty() const

Returns t r ue if the container contains no elements; f al se otherwise.

iterator begin() const

Returns an i t er at or that can be used to begin traversing all locations in
the container.

iterator end() const

Returns an i t er at or that represents the “end marker,” or a position past
the last element in the container.

int size() const

Returns the number of elements in the container.

The most interesting of these methods are those that return an i t er at or .
The operations that can be performed by an i t er at or are described in Section
A.2.3.

� � � 5
iterator

There are actually many types of i t er at or s. However, we can always count on
the following operations being available for any iterator type:

itr++

Advances the iterator i t r to the next location. Both the prefix and postfix
forms are allowable, but the precise return type (whether it is a constant refer-
ence or a reference) can depend on the type of iterator.

*itr

Returns a reference to the object stored at iterator i t r ’ s location. The refer-
ence returned may or may not be modifiable, depending on the type of itera-
tor. For instance, the const _i t er at or , which is used to traverse const
containers, has an oper at or * that returns a const reference, thus disal-
lowing * i t r being on the left-hand side of an assignment.

 # i nc l ude < i ost r eam>
 us i ng n amespace s t d;

 i nt m ai n()
 {
 c out < < " Fi r st p r ogr am" < < e ndl ;
 r et ur n 0 ;
 }

6 7 8 9 : ; < = > ? @ A B C D A E F A G H I B @ J F J K L M N O

STL.mkr Page 3 Wednesday, June 3, 1998 10:28 AM

� � P

 / / P r i nt t he c ont ent s o f C ont ai ner c
 t empl at e < cl ass C ont ai ner >
 voi d p r i nt Col l ec t i on(c onst C ont ai ner & c)
 {
 C ont ai ner : : const _i t er at or i t r
 f or (i t r = c . begi n() ; i t r ! = c . end() ; i t r ++)
 c out < < * i t r < < ' \ n' ;
 }

6 7 8 9 : ; < = Q R A @ J C C S K T E J C K J C B E U G J V
Container

itr1==itr2

Returns t r ue if iterators i t r 1 and i t r 2 refer to the same location; f al se
otherwise.

itr1!=itr2

Returns t r ue if iterators i t r 1 and it r 2 refer to a different location;
f al se otherwise.

Each container defines several iterators. For instance, a l i s t <i nt > defines
l i s t <i nt >: : i t er at or and l i s t <i nt >: : const _i t er at or . (There
are also reverse iterators, that we do not discuss.) The const _i t er at or must
be used instead of an i t er at or if the container is non-modifiable.

As an example, the routine in Figure A.2 prints each element in any con-
tainer, provided that the element has oper at or << defined for it. If the con-
tainer is an ordered set, its elements are output in sorted order.

� � � W X $ (& *

Often it is necessary to store a pair of objects in a single entity. This is useful for
returning two things simultaneously. It is also useful for the map class, discussed
in Section A.5. The STL defines a template pai r class with the fol lowing
semantics:

t empla t e < c l ass Obj ect 1, c la ss O bj ect 2>
cl ass P ai r
{
 p ubl i c :
 O bj ect 1 f i r s t ;
 O bj ect 2 s econd;
} ;

STL.mkr Page 4 Wednesday, June 3, 1998 10:28 AM

� � Y

� � � Z ' [+ / 0 (3 + \] ^ # / 0 *

Container algorithms that require an ordering property generally use a default
order (typical ly the l es s function, implemented as a cal l to the object’ s
ope r ator <). The algorithms can generall y provide a function that specifies a
different ordering property. This is most useful when the natural ordering is not
exactly what is needed. For instance, we may want to sort a vector of strings,
but ignore case distinctions. Or for a simpler example, we may want to sort the
strings by their length.

An example is shown in Figure A.3; the function Comp compares strings by
length; this function is passed as the optional third parameter to sor t in the form
of an object. A function object defines an implementation for its oper at or () ,
which is the function call operator. We then pass an instance of the function
object as the third parameter to sor t .

Although this function object contains no data members and no constructors,
more general function objects are possible. The only requirement is that
oper at or () must be defined. The STL provides numerous template function
objects including l ess (the default for many container algorithms) and
gr eat er .

 c l ass C omp
 {
 publ i c :
 b ool o per at or () (c onst s t r i ng & l hs ,
 c onst s t r i ng & r hs) c onst
 { r et ur n l hs . l engt h() < r hs . l engt h() ; }
 } ;

 voi d s or t Li s t Of St r i ngsByLengt h(v ect or <st r i ng> & a r r ay)
 {
 s or t (a r r ay. begi n() , a r r ay. end() , C omp()) ;
 }

6 7 8 9 : ; < = _ ` B E A C @ J F G a F E A @ C S H I B @ J F G U I J T C @ E J E b c K T C

�
 4 d � � � � � � � � � � e � � � � � � f
vector

� � �
list

Both a vec t or and li s t can be used to implement an unordered container
(also known as a sequence). The user has precise control over where in the
sequence each element is inserted. The user can access elements by their position
in the sequence, and search for elements in the sequence. However, depending on
the particular operation, only one of the vect or or li s t might be eff icient.

STL.mkr Page 5 Wednesday, June 3, 1998 10:28 AM

� � g

� � 5 � !
vector

1 * �
list

The STL provides three sequence implementations, but only two are generally
used: an array-based version and a doubly linked-li st based version. The array-
based version can be appropriate if insertions are performed only at the high end
of the array, for the reasons discussed in Chapter 3. The STL doubles the array if
an insertion at the high-end would exceed capacity. Although this gives good
Big-Oh performance, for large objects that are expensive to construct, a list ver-
sion would be preferable in order to minimize calls to the constructors.

Insertions and deletions toward the middle of the sequence are ineff icient in
the vec t or ; on the other hand, direct access by the index is impossible in a
l i s t . If indexing is not needed, the l i s t can always be safely used. The
vect or may still be a better choice if insertions occur only at the end and the
objects being inserted are not overly expensive to construct. Some of the addi-
tional operations on sequences are:

void push_back(const Object & element)

Appends el ement at the end of this sequence.

void push_front(const Object & element)

Prepends el ement to the front of this sequence. Not available for vecto r ,
because it is too ineff icient. However a deque is available that is like a
vect or , but supports double-ended access.

Object & front() const

Returns the first element in this sequence.

Object & back() const

Returns the last element in this sequence.

void pop_front()

Removes the first element from this sequence. Available only for l i s t and
deque.

void pop_last()

Removes the last element from this sequence.

iterator insert(iterator pos, const Object & obj)

Inserts obj prior to the element in the position referred to by pos . This oper-
ation takes constant time for a l i s t , but takes time proportional to the dis-
tance from pos to the end of the sequence for a vect or . Returns the position
of the newly inserted item.

void erase(iterator pos)

Removes the object at the position referred to by pos . Elements in the
sequence are logically moved as required. This operation is constant time for
a l i s t , but takes time proportional to the distance from pos to the end of
the sequence for a vect or . Returns the position of the newly inserted item.

STL.mkr Page 6 Wednesday, June 3, 1998 10:28 AM

� � h

� � 5 � i 0 $ / j * $ + % k [# [# *

The STL provides a sta ck and queu e class, but these simply use a sequence
container (li s t , ve ctor , or dequ e), calli ng the appropriate functions. The
queue does not even use standard names such as enqueue and dequeue. Thus
there’s no compelling reason not to use the sequence containers directly.

�
 P � � �

The set is an ordered container. It allows no duplicates.1 The underlying imple-
mentation is a balanced search tree. In addition to the usual begi n, end, si ze,
and empt y , the set provides:

pair<iterator,bool> insert(const Object & element)

Adds el ement to the set if it is not already present. The bool component
of the return value is t r ue if the set did not already contain el ement ; oth-
erwise it is f al se. The i t er at or component of the return value is the
location of el ement in the set.

iterator find(const Object & element) const

Returns an i t er at or containing the location of el ement in the set, or
end() if el ement is not in the set.

int erase(const Object & element)

Removes el ement from the set if is present. Returns the number of ele-
ments removed (thus, either 0 or 1).

By default, ordering uses the l ess<Obj ect > function object, which itself
is implemented by call ing oper at or < for the Obj ect . An alternate order-
ing can be specified by constructing the set with a function object.

�
 Y l � � �

A map is used to store a collection of ordered entries that consists of keys and
their values. The map maps keys to values. Keys must be unique, but several keys
can map to the same values.2 Thus values need not be unique. The map uses a
balanced search tree to obtain logarithmic search times.

The map behaves like a set instantiated with a pai r , whose comparison
function refers only to the key. Thus it supports begi n, end, si ze, and
empt y , but the underlying iterator is a key,value pair. In other words, for an iter-

1. The mul t i set allows duplicates, but we do not discuss the mul t i set here.
2. The mul t i map allows duplicate keys, but we do not discuss the mul t i map here.

STL.mkr Page 7 Wednesday, June 3, 1998 10:28 AM

� � m

ator i t r , * i t r is of type pai r <KeyType, Val ueType>. The map also sup-
ports i nser t , f i nd, and er ase. For i nser t , one must provide a
pai r <KeyType, Val ueType> object. Although f i nd only requires a key,
the iterator it returns references a pai r . Using only these operations is hardly
worthwhile, because the syntactic baggage can be excessive.

Fortunately the map has an important extra operation. The array-indexing
operation is overloaded for maps:

ValueType & operator[](const KeyType & key)

const ValueType & operator[](const KeyType & key) const

Returns the value to which this map maps key . If key is not mapped then
key becomes mapped to a default Val ueType generated by applying a
zero-parameter constructor.

This type of syntax is sometimes known as an associative array. Although
we’ ll see an example of the map shortly, it is worth il lustrating with a few lines of
code. In Figure A.4, peopl e maps a st r i ng to an i nt . So " Ti m" is initially
3, and then 5, which is output by the first print statement. " Bob" is not in the
map prior to the print statement, but the call to oper at or [] puts it in the map
with a default value of 0. Thus 0 is (perhaps unintentionally) output by the second
print statement. To know if " Bob" was in the map, we would have needed to call
f i nd first, and check to see if the returned iterator was equal to end() . Once we
call f i nd, since we have an iterator i t r , to f i nd the value, we should use
i t r - >second, to avoid a second search.

�
 g n o � p � q � f r � � � � � � � s � � � � � � � � � � � �

A concordance of a fil e is a li sting that contains all the words in a fil e, with the
line number on which the word occurs. Using the STL, we can write a program
that produces a concordance. We assume that a word is any sequence of consecu-
tive non-white space characters.

 # i nc l ude < map>
 us i ng n amespace s t d;

 i nt m ai n()
 {
 map<st r i ng, i nt > p eopl e;
 p eopl e[" Ti m"] = 3 ; p eopl e[" Ti m"] = 5 ;
 cout < < " Ti m' s v al ue i s " < < p eopl e[" Ti m"] < < e ndl ;
 cout < < " Bob' s v al ue i s " < < p eopl e[" Bob"] < < e ndl ;
 r et ur n 0 ;
 }

6 7 8 9 : ; < = t u a a I B C A G C @ E J E U C S K
mapv N @ H w B x G a I K @ B y v z E b w B x G a I K @ B { v

STL.mkr Page 8 Wednesday, June 3, 1998 10:28 AM

� � |

 # i nc l ude < i ost r eam>
 #i nc l ude < f s t r eam>
 #i nc l ude < sst r eam>
 #i nc l ude < map>
 #i nc l ude < st r i ng>
 #i nc l ude < vect or >
 us i ng n amespace s t d;

 os t r eam & o per at or <<(o s t r eam & o ut ,
 c onst p ai r <s t r i ng, v ect or <i nt > > & r hs)
 {
 o ut < < r hs . f i r st < < " : " < < ' \ t ' < < r hs. second[0] ;
 f or (i nt i = 1 ; i < r hs. second. s i ze() ; i ++)
 o ut < < " , " < < r hs . second[i] ;
 r et ur n o ut ;
 }

 i nt m ai n(i nt a r gc, c har * ar gv[])
 {
 i f (a r gc ! = 2)
 {
 c er r < < " Usage: " < < a r gv[0] < < " f i l ename" < < e ndl ;
 r et ur n 1 ;
 }

 i f s t r eam i nFi l e(a r gv[1]) ;
 i f (! i nFi l e)
 {
 c er r < < " Cannot o pen " < < a r gv[1] < < e ndl ;
 r et ur n 1 ;
 }

 t ypedef m ap<st r i ng, v ect or <i nt > > w or dmap;
 wor dmap c oncor dance;
 s t r i ng o neLi ne;

 / / R ead t he w or ds; a dd t hem t o w or dmap
 f or (i nt l i neNum = 1 ; g et l i ne(i nFi l e, o neLi ne) ; l i neNum++)
 {
 i s t r i ngst r eam s t (o neLi ne) ;
 s t r i ng w or d;
 w hi l e(s t > > w or d)
 c oncor dance[w or d] . push_back(l i neNum) ;
 }

 w or dmap: : i t er at or i t r ;
 f or (i t r = c oncor dance. begi n() ; i t r ! = c oncor dance. end() ; i t r ++)
 c out < < * i t r < < e ndl ;
 r et ur n 0 ;
 }

6 7 8 9 : ; < = } ~ E J T E A � G J T K D A E F A G H I B @ J F C S K M N O

STL.mkr Page 9 Wednesday, June 3, 1998 10:28 AM

� � � �

The basic idea is to use a map, to map words to a list of lines on which the
word occurs. Thus each key is word, and its value is a list of line numbers. When
we see a word, we check to see if it is already in the map. If it is, then we simply
add the current line number to the list of lines that corresponds to the word. If it is
not, we add to the map the word along with a list containing the current line num-
ber. After we have read all of the words, we can iterate through the map. This
generates the map entries in key-sorted order, so the words will appear in sorted
order. For each map entry, we output the word, and then we go through the linked
list of line numbers, and output them

� � � � ! i , � � # & * (3 +

The code that uses the STL is shown in Figure A.5. We open a fil e and create a
map. We can use either a vect or or l i s t to store the line numbers, since both
support eff icient push_back operations. In the f or loop, we repeatedly read
one line at a time, maintaining the current line number. The i s t r i ngst r eam is
used to extract white-space-delimited tokens from the line (it has the same look
and feel as any other stream). The line number is then added to the entry corre-
sponding to word in the concordance map. (When a word is seen for the first
time, the expression concor dance[wor d] inserts the pair consisting of wor d
and a default vector into the map. Thus the subsequent push_back is safe.)
At the end of the loop, we use an iterator to go through the map, and print out
each map entry.

The overloaded oper at or << function accepts a pair; the word is stored in
the f i r st data member and the vect or of line numbers in the second data
member. The code treats the first line number as a special case (it is not preceded
by a comma, but is preceded by a tab); it is otherwise similar to the code in Figure
A.2. Note that oper at or << assumes that the list of line numbers is not empty,
which is guaranteed by the rest of the code.

As I write this, the program works only on Visual C++ 5.0. By using a differ-
ent string stream class, we can get it to work on g++ 2.8.1.

�
 h � � � � � � � � � � � � � �

The STL is a powerful library that can be very useful for many applications. We
have discussed only the bare bones basics. The STL contains many other interest-
ing constructs that we do not discuss.

STL.mkr Page 10 Wednesday, June 3, 1998 10:28 AM

