
C++ Review for COP-3530
This material is excerpted from Data Structures and Algorithm Analysis in C++ (Second
Edition) by Mark Allen Weiss and is copyrighted. All rights are reserved.

1 C++ Classes

In this course, we will write many data structures. All of the data structures will
be objects that store data (usually a collection of identically typed items), and pro-
vide functions that manipulate the collection. In C++ (and other languages), this
is accomplished by using a class. This section describes the C++ class.

 / * *
 * A c l ass f or s i mul at i ng a n i nt eger m emor y c el l .
 * /
 c l ass I nt Cel l
 {
 p ubl i c :
 / * *
 * C onst r uct t he I nt Cel l .
 * I ni t i al v al ue i s 0 .
 * /
 I nt Cel l ()
 { s t or edVal ue = 0 ; }

 / * *
 * C onst r uct t he I nt Cel l .
 * I ni t i al v al ue i s i ni t i al Val ue.
 * /
 I nt Cel l (i nt i ni t i al Val ue)
 { s t or edVal ue = i ni t i al Val ue; }

 / * *
 * R et ur n t he s t or ed v al ue.
 * /
 i nt r ead()
 { r et ur n s t or edVal ue; }

 / * *
 * C hange t he s t or ed v al ue t o x .
 * /
 v oi d w r i t e(i nt x)
 { s t or edVal ue = x ; }

 p r i vat e:
 i nt s t or edVal ue;
 } ;

Figure 1 A complete declaration of an I nt Cel l class

C++.mkr Page 1 Wednesday, December 9, 1998 7:27 AM

1.1 Basic class Syntax

A class in C++ consists of its members. These members can be either data or
functions. The functions are called member functions. Each instance of a class is
an object. Each object contains the data components specified in the class (unless
the data components are static , detail that can be safely ignored for now). A
member function is used to act on an object. Sometimes member functions are
called methods.

As an example, Figure 1 is the I nt Cel l class. In the I nt Cel l class, each
instance of the I nt Cel l — an I nt Cel l object — contains a single data mem-
ber named st or edVal ue. Everything else in this particular class is a method.
In our example, there are four methods. Two of these methods are r ead and
wr i t e. The other two are special methods known as constructors. Let us
describe some key features.

First, notice the two labels publ i c and pr i vat e. These labels determine
visibil ity of class members. In this example, everything except the st or ed-
Val ue data member is publ i c . st or edVal ue is pr i vat e. A member that
is publ i c may be accessed by any method in any class. A member that is pr i -
vat e may only be accessed by methods in its class. Typically, data members are
declared pr i vat e, thus restricting access to internal details of the class, while
methods intended for general use are made publ i c . This is known as informa-
tion hiding. By using pr i vat e data members, we can change the internal repre-
sentation of the object, without having an effect on other parts of the program that
use the object. This is because the object is accessed through the publ i c mem-
ber functions, whose viewable behavior remains unchanged. The users of the
class do not need to know internal details of how the class is implemented. In
many cases having this access leads to trouble. For instance, in a class that stored
dates using month, day, and year, by making the month, day, and year pr i vat e,
we prohibit an outsider from setting these data members to il legal dates, such as
Feb 29, 2001. However, some methods may be for internal use, and can be pr i -
vat e. In a class, all members are pr i va t e by default, so the initial publ i c is
not optional.

Second, we see two constructors. A constructor is a method that describes
how an instance of the class is constructed. If no constructor is explicitly defined,
one that initializes the data members using language defaults is automatically
generated. The I nt Cel l class defines two constructors. The first is called if no
parameter is specified. The second is called if an i nt parameter is provided, and
uses that i nt to initialize the st or edVal ue member.

1.2 Extra Constructor Syntax and Accessors

Although the class works as written, there is some extra syntax that makes for
better code. Four changes are shown in Figure 2 (we omit comments for brevity).
The differences are as follows:

C++.mkr Page 2 Wednesday, December 9, 1998 7:27 AM

 / * *
 * A c l ass f or s i mul at i ng a n i nt eger m emor y c el l .
 * /
 c l ass I nt Cel l
 {
 p ubl i c :
/ * 1 * / expl i c i t I nt Cel l (i nt i ni t i al Val ue = 0)
/ * 2 * / : st or edVal ue(i ni t i al Val ue) { }
/ * 3 * / i nt r ead() c onst
/ * 4 * / { r et ur n s t or edVal ue; }
/ * 5 * / voi d w r i t e(i nt x)
/ * 6 * / { s t or edVal ue = x ; }
 p r i vat e:
/ * 7 * / i nt s t or edVal ue;
 } ;

Figure 2 I nt Cel l class with revisions

Default parameters

The I nt Cel l constructor illustrates the default parameter. As a result, there are
still two I ntCe l l constructors defined. One accepts an i niti alVa l ue . The
other is the zero-parameter constructor, which is implied because the one-param-
eter constructor says that i nitia l Valu e is optional. The default value of 0
signifies that 0 is used if no parameter is provided. Default parameters can be
used in any function, but they are most commonly used in constructors.

Initializer list

The I nt Cel l constructor uses an initializer list (line 2) prior to the body of the
constructor. The initializer li st is used to initiali ze the data members directly. In
the example above, there’s hardly a difference, but using initializer lists instead of
an assignment statement in the body saves time in the case where the data mem-
bers are class types that have complex initializations. In some cases it is required.
For instance, if a data member is const (meaning it is not changeable after the
object has been constructed), then the data member’s value can only be initialized
in the initializer list. Also, if a data member is itself a class type that does not have
a zero-parameter constructor, then it must be initiali zed in the initiali zer l ist.
We’ ll see examples of mandatory use of the initializer list starting in Chapter 4.

explicit constructor

The I nt Cel l constructor is expl i c i t . You should make all one-parameter
constructors expli c i t to avoid behind the scenes type-conversions. Otherwise,
there are somewhat lenient rules that will allow type-conversions without explicit
casting operations. Usuall y this is unwanted behavior, that destroys strong-typ-
ing, and can lead to hard-to-find bugs. As an example consider the following:

C++.mkr Page 3 Wednesday, December 9, 1998 7:27 AM

 In t Cel l o bj ; / / o bj i s a n I nt Cel l
 obj = 3 7; / / S houl d n ot c ompi l e: t ype m is mat ch

The code fragment above constructs an I nt Cel l object obj and then performs
an assignment statement. But the assignment statement should not work, because
the right-hand side of the assignment operator is not another I nt Cel l . obj ’ s
write method should have been used instead. However, C++ has lenient rules.
Normall y a one-parameter constructor defines an implicit type conversion, in
which a temporary object is created that makes an assignment (or parameter to a
function) compatible. In this case, the compiler would attempt to convert

 obj = 3 7; / / S houl d n ot c ompi l e: t ype m is mat ch

into

 In t Cel l t empor ar y = 3 7;
 obj = t empora r y;

Notice that the construction of the temporary can be performed by using the
one-parameter constructor. The use of explicit means that a one parameter con-
structor cannot be used to generate an implicit temporary. Thus, since
I nt Cel l ’ s constructor is declared explicit, the compiler wil l correctly complain
that there is a type mismatch.

In Section 7.8, we’ ll see an example where the lenient rules are helpful, but
this is the exception, rather than the rule.

The expl i c i t keyword is new, and not all compilers support it. However,
the preprocessor can be used to replace all occurrences of expl i ci t with white
space1, so there’s no reason not to put expl i c i t in your code.

Constant member function

A member function that examines but does not change the state of its object is an
accessor. A member function that changes the state is a mutator (because it
mutates the state of the object). In the typical coll ection class, for instance,
i sEmpt y is an accessor, while mak eEmpt y is a mutator.

In C++, we can mark each member function as being an accessor or a muta-
tor. Doing so is an important part of the design process, and should not be viewed
as simply a comment. Indeed, there are important semantic consequences. For
instance, mutators cannot be applied to constant objects. By default, all member
functions are mutators. To make a member function an accessor, we must add the
keyword const after the closing parenthesis that ends the parameter type list.
The const-ness is part of the signature. const can be used with many different
meanings. The function declaration can have const in three different contexts.

1. Use the following statement:
#def in e e xpl i c i t

C++.mkr Page 4 Wednesday, December 9, 1998 7:27 AM

Only the const after a closing parenthesis signifies an accessor. Other uses are
described in Sections 2.2 and 2.3.

In the I nt Cel l class, re ad is clearly an accessor: it does not change the
state of the I nt Cel l . Thus it is made a constant member function at line 3. If a
member function is marked as an accessor but has an implementation that
changes the value of any data member, a compiler error is generated.2

 # i f ndef _ I nt Cel l _H_

2. Data members can be marked mut abl e to indicate that const-ness should not apply to them. This is a new
feature, that is not supported on all compilers.

 #def i ne _ I nt Cel l _H_

 / * *
 * A c l ass f or s i mul at i ng a n i nt eger m emor y c el l .
 * /
 c l ass I nt Cel l
 {
 p ubl i c :
 e xpl i c i t I nt Cel l (i nt i ni t i al Val ue = 0) ;
 i nt r ead() c onst ;
 voi d w r i t e(i nt x) ;
 pr i vat e:
 i nt s t or edVal ue;
 } ;

 # endi f

Figure 3 I nt Cel l class interface, in file IntCell.h

1.3 Separation of Interface and Implementation

The class in Figure 2 contains all the correct syntactic constructs. However, in
C++ it is more common to separate the class interface from its implementation.
The interface lists the class and its members (data and functions). The implemen-
tation provides implementations of the functions.

Figure 3 shows the class interface for I nt Cel l , Figure 4 shows the imple-
mentation, and Figure 5 shows a mai n routine that uses the I nt Cel l . Some
important points follow:

Preprocessor commands

The interface is typicall y placed in a fil e that ends with . h. Source code that
requires knowledge of the interface must #in c lude the interface fi le. In our
case, this is both the implementation fil e and the fil e that contains main . Occa-
sionall y, a complicated project will have files including other fi les, and there is

C++.mkr Page 5 Wednesday, December 9, 1998 7:27 AM

the danger that an interface might be read twice in the course of compiling a file.
This can be illegal. To guard against this, each header file uses the preprocessor
to define a symbol when the class interface is read. This is shown on the first two
lines in Figure 3. The symbol name, _Int Cell _H_, should not appear in any
other file; usually we construct it from the filename. The first line of the interface
file tests if the symbol is undefined. If so, we can process the file. Otherwise, we
do not process the file (by skipping to the #endi f), because we know that we
have already read the file.

Scoping operator

In the implementation file, which typically ends in . cpp, . cc , or . C, each mem-
ber function must identify the class that it is part of. Otherwise, it would be
assumed that the function is in global scope (and zillions of errors would result).
The syntax is Cl assName: : member . The : : is called the scoping operator.

 # i nc l ude " I nt Cel l . h"

 / * *
 * C onst r uct t he I nt Cel l w i t h i ni t i al Val ue
 * /

 I nt Cel l : : I nt Cel l (i nt i ni t i al Val ue) : s t or edVal ue(i ni t i al Val ue)
 {
 }

 / * *
 * R et ur n t he s t or ed v al ue.
 * /
 i nt I nt Cel l : : r ead() c onst
 {
 r et ur n s t or edVal ue;
 }

 / * *
 * S t or e x .
 * /
 voi d I nt Cel l : : wr i t e(i nt x)
 {
 s t or edVal ue = x ;
 }

Figure 4 I nt Cel l class implementation in file IntCell.cpp

C++.mkr Page 6 Wednesday, December 9, 1998 7:27 AM

 # i nc l ude " I nt Cel l . h"

 i nt m ai n()
 {
 I nt Cel l m ; / / O r , I nt Cel l m (0) ; b ut n ot I nt Cel l m () ;

 m. wr i t e(5) ;
 c out < < " Cel l c ont ent s : " < < m. r ead() < < e ndl ;

 r et ur n 0 ;
 }

Figure 5 Program that uses IntCell in file TestIntCell.cpp

Signatures must match exactly

The signature of an implemented member function must match exactly the signa-
ture li sted in the class interface. Recall that whether a member function is an
accessor (via the const at the end) or a mutator is part of the signature. Thus an
error would result i f, for example, the cons t was omitted from exactly one of
the r ead signatures in Figures 3 and 4. Note that default parameters are specified
in the interface only. They are omitted in the implementation.

Objects are declared like primitive types

In C++, an object is declared just like a primitive type. Thus, the following are
legal declarations of an I nt Cel l object:

I nt Cel l o bj 1; / / Z ero p ar amet er const r uct or
I nt Cel l o bj 2(1 2) ; / / O ne par amet er const r uct or

On the other hand, the following are incorrect:

I nt Cel l o bj 3 = 37 ; / / C ons t r uct or i s expl i c i t
I nt Cel l o bj 4() ; / / F unc t i on d ecl ar at i on

The declaration of obj 3 is il legal because the one-parameter constructor is
expl i c i t . It would be legal otherwise. (In other words, a declaration that uses
the one parameter constructor must use the parentheses to signify the initial
value.) The declaration for obj 4 states that it is a function (defined elsewhere)
that takes no parameters and returns an I nt Cel l .

1.4 vector and string

The new C++ standard defines two classes: the vect or and st r i ng. vect or
is intended to replace the built-in C++ array that causes no end of trouble. The

C++.mkr Page 7 Wednesday, December 9, 1998 7:27 AM

problem with the built-in C++ array is that it does not behave like a first-class
object. For instance, buil t-in arrays cannot be copied with =, a buil t-in array does
not remember how many items it can store, and its indexing operator does not
check that the index is valid. The buil t-in string is simply an array of characters,
and thus has the liabil ities of arrays plus a few more. For instance == does not
correctly compare two strings.

The vect or and st r i ng classes in the STL treat arrays and strings as first-
class objects. A vect or knows how large it is. Two st r i ng objects can be
compared with ==, <, and so on. Both vect or and st r i ng can be copied with
=. If possible, you should avoid using the buil t-in C++ array and string. Because
this is not always possible, we discuss the built-in array and string in Section 2.6.

Unfortunately, the vect or does not come with index-range checking, and is
also not available on all compilers. Fortunately, it is easy to write a vect or class
with bounds-checks, and a reasonable subset of vect or features is provided in
Appendix B. We use that class throughout. Likewise, the st r i ng class is not
universally available; we provide a simple version in Appendix B.

vect or and st r i ng are easy to use. The code in Figure 6 reads a bunch of
st r i ngs into a vect or <st r i ng> (notice that we specify the type of
vect or) and then outputs them in reverse order. We use the r es i ze method to
double the vect or ’ s capacity if it is full. Notice also, that s iz e is a method that
returns the size of the vect or . Without a vect or and st r i ng class, this code
would be much more complex.

 # i nc l ude < i ost r eam. h>
 #i nc l ude " vect or . h" / / v ect or (our v er s i on, i n A ppendi x B)
 # i nc l ude " myst r i ng. h" / / s t r i ng (our v er s i on, i n A ppendi x B)

 i nt m ai n()
 {
 v ect or <st r i ng> v (5) ;
 i nt i t emsRead = 0 ;
 s t r i ng x ;

 w hi l e(c i n > > x)
 {
 i f (i t emsRead = = v . s i ze())
 v . r esi ze(v . s i ze() * 2) ;
 v [i t emsRead++] = x ;
 }

 f or (i nt i = i t emsRead - 1 ; i > = 0 ; i - -)
 c out < < v [i] < < e ndl ;
 r et ur n 0 ;
 }

Figure 6 Using the vector class: Read some strings and output them in reverse
order.

C++.mkr Page 8 Wednesday, December 9, 1998 7:27 AM

st r i ng is also easy to use, and has all the relational and equali ty operators
to compare the states of two strings. Thus st r 1==st r 2 is t ru e if the value of
the strings are the same. It also has a l engt h method that returns the string
length.

2 C++ Details

Like any language, C++ has its share of detail s and language features. Some of
these are discussed in this section.

2.1 Pointers

A pointer variable is a variable that stores the address where another object
resides. I t is the fundamental mechanism used in many data structures. For
instance, to store a list of items, we could use a contiguous array, but insertion
into the middle of the contiguous array requires relocation of many items. Rather
than store the collection in an array, it is common to store each item in a separate,
non-contiguous piece of memory, that is allocated as the program runs. Along
with each object is a l ink to the next object. This li nk is a pointer variable,
because it stores a memory location of another object. This is the classic linked
list that is discussed in more detail in Chapter 16.

To illustrate the operations that apply to pointers, we rewrite Figure 5 to
dynamically allocate the I nt Cel l . It must be emphasized that for a simple
I nt Cel l class there is no good reason to write the C++ code this way. We do it
only to illustrate dynamic memory allocation in a simple context. Later in the
text, we will see more complicated classes where this technique is useful and nec-
essary. The new version is shown in Figure 7.

 i nt m ai n()
 {
/ * 1 * / I nt Cel l * m;

/ * 2 * / m = n ew I nt Cel l (0) ;
/ * 3 * / m- >wr i t e(5) ;
/ * 4 * / c out < < " Cel l c ont ent s : " < < m- >r ead() < < e ndl ;

/ * 5 * / d el et e m ;
/ * 6 * / r et ur n 0 ;
 }

Figure 7 Program that uses pointers to IntCell (there is no compell ing reason to do

this)

C++.mkr Page 9 Wednesday, December 9, 1998 7:27 AM

Declaration

Line 1 il lustrates the declaration of m. The * indicates that m is a pointer variable;
it is allowed to point at an In t Cel l object. The value of m is the address of the
object that it points at. m is uninitialized at this point. In C++, no such check is
performed to verify that m is assigned a value prior to being used (however, sev-
eral vendors make products that do additional checks, including this one). Use of
uninitialized pointers typically crash programs because they result in access of
memory locations that do not exist. In general, it is a good idea to provide an ini-
tial value, either by combining li nes 1 and 2, or by initiali zing m to the NULL
pointer.

Dynamic object creation

Line 2 illustrates how objects can be created dynamically. In C++ new returns a
pointer to the newly created object. In C++, there are two ways to create an object
using its zero-parameter constructor. Both of the following would be legal:

 m = n ew I nt Cel l () ; / / O K
 m = n ew I nt Cel l ; / / P r ef er r ed i n t hi s t ext

We generally use the second form because of the problem illustrated by
obj 4 in Section 1.2.

Garbage collection and delete

In some languages, when an object is no longer referenced, it is subject to auto-
matic garbage collection. The programmer does not have to worry about it. C++
does not have garbage collection. When an object that is allocated by new is no
longer referenced, the del et e operation must be applied to the object (through a
pointer). Otherwise, the memory that it consumes is lost (until the program termi-
nates). This is known as a memory leak. Memory leaks are, unfortunately, com-
mon occurrences in many C++ programs. Fortunately, many sources of memory
leaks can be automaticall y removed with care. One important rule is to not use
new when an automatic variable can be used instead. In the original program, the
I nt Cel l was not allocated by new, but instead was allocated as a local vari-
able. Its memory is automaticall y reclaimed when the function in which it was
declared returns. The del et e operator is illustrated at line 5.

Assignment and comparison of pointers

Assignment and comparison of pointer variables in C++ is based on the value of
the pointer, meaning the memory address that it stores. Thus two pointer vari-
ables are equal if they point at the same object. If they point at different objects,
the pointer variables are not equal, even if the objects being pointed at are them-
selves equal. If l hs and r hs are pointer variables (of compatible types), then
l hs=r hs makes l hs point at the same object that r hs points at.

C++.mkr Page 10 Wednesday, December 9, 1998 7:27 AM

Accessing members of an object through a pointer

If a pointer variable points at a class type, then a member of the object being
pointed at can be accessed via the - > operator. This is illustrated at line 3.

Other pointer operations

C++ allows all sorts of bizarre operations on pointers that are occasionally useful.
For instance, < is defined. For pointers l hs and rhs , l hs<rhs is true if the
object pointed at by lhs is stored at a lower memory location than the object
pointed at by r hs . There is rarely a good reason to use this construct. However,
one example of an equally unusual operation is illustrated in Section 7.8.

One important operator is the address-of operator &. This operator returns
the memory location where an object resides and is useful for implementing an
alias test that is discussed in Section 2.5.

2.2 Parameter Passing

Many languages, C and Java included, pass all parameters using call by value: the
actual argument is copied into the formal parameter. However, parameters in C++
could be large complex objects, for which copying is ineff icient. Additionally,
sometimes it is desirable to be able to alter the value being passed in. As a result
of this, C++ has three different ways to pass parameters. However, there is a sim-
ple rule to decide which method to use.

The three parameter passing mechanisms are illustrated in the following
function declaration that returns the average of the first n integers in ar r , and
sets er r or Fl ag to t r ue if n is larger then ar r . s i ze() or smaller than 1.

double a vg(c onst v ect or <i nt > & a r r , in t n , b ool & er r or Fl ag);

Here ar r is of type vect or <i nt > and is passed using call by constant ref-
erence, n is of type in t and is passed using call by value, and er r or Fl ag is of
type bool and is passed using call by reference. The parameter passing mecha-
nism can generally be decided by a two-part test.

1. If the formal parameter should be able to change the value of the
actual argument, then you must use call by reference.

2. Otherwise, the value of the actual argument cannot be changed by
the formal parameter. If the type is a primitive type, use call by
value. Otherwise, the type is a class type and would generally be
passed using call by constant reference.3

3. However, class types that are small (for instance, those that store only a single built -in type) can be passed
using call by value instead of call by constant reference.

C++.mkr Page 11 Wednesday, December 9, 1998 7:27 AM

 c onst s t r i ng & f i ndMax(c onst v ect or <st r i ng> & a)
 {
 i nt m axI ndex = 0 ;

 f or (i nt i = 1 ; i < a . s i ze() ; i ++)
 i f (a [m axI ndex] < a [i])
 maxI ndex = i ;

 r et ur n a [m axI ndex] ;
 }

 c onst s t r i ng & f i ndMaxWr ong(c onst v ect or <st r i ng> & a)
 {
 s t r i ng m axVal ue = a [0] ;

 f or (i nt i = 1 ; i < a . s i ze() ; i ++)
 i f (m axVal ue < a [i])
 maxVal ue = a [i] ;

 r et ur n m axVal ue;
 }

Figure 8 Two versions to find the maximum string. Only the first is correct.

In the declaration of avg , er r orF l ag is passed by reference, so that the new
value of er r or Fl ag will be reflected in the actual argument. ar r and n wil l
not be changed by avg. ar r is passed by constant reference because it is a class
type, and making a copy would be too expensive. n is passed by value because it
is a primitive type and is cheaply copied.

To summarize the parameter-passing options:

• Call by value is appropriate for small objects that should not be altered by
the function.

• Call by constant reference is appropriate for large objects that should not
be altered by the function.

• Call by reference is appropriate for all objects that may be altered by the
function.

2.3 Return Passing

Objects can also be returned using return by value, return by constant reference,
and occasionally, return by reference. For the most part, do not use return by ref-
erence. In Section 4.3 we will see one example where it is useful, but this is rare.

It is always safe to use return by value. However, if the object being returned
is a class type, it may be better to use return by constant reference, to avoid the

C++.mkr Page 12 Wednesday, December 9, 1998 7:27 AM

overhead of a copy.4 However, this is only possible if it is guaranteed that the
expression in the return statement has lifetime that extends past the return of the
function. This is a very tricky part of C++, and many compilers wil l fail to give a
warning message for incorrect use.

As an example, consider the code in Figure 8, which contains two nearly
identical functions to find the largest (alphabetically) st r i ng in an array. Both
attempt to return the value by constant reference. The first version, f i ndMax ,
shows acceptable use: the expression a[maxI ndex] indexes a vect or that
already exists outside of f i ndMax , and wil l exist long after the call returns. The
second version is wrong. maxVal ue is a local variable that does not exist when
the function returns. Thus it is improper to return without making a copy of it. If
the compiler fails to complain, then the return value may or may not contain use-
ful information, depending on how quickly the compiler decides to reclaim the
memory that was used by maxVal ue. This makes for a diff icult debugging job.

2.4 Reference Variables

References and constant reference variables are commonly used for parameter
passing. But they can also be used as local variables or as class data members. In
these cases, they variable names become synonyms for the objects that they refer-
ence (much like the formal parameters become synonyms for actual arguments in
call by reference). As local variables, they avoid the cost of a copy and thus are
useful when querying a data structure that contains a coll ection of class types.
Thus, in many cases, client code such as

 st r i ng x = fi ndMax(a);
 . . .
 cout < < x < < endl ;

is better written as

 const s t r i ng & x = f i ndMax(a) ;
 . . .
 cout < < x < < endl ;

A second use, that we will see in Chapter 5, is to use a local reference vari-
able solely for the purpose of renaming an object that is known by a complicated
expression. The code we wil l see is similar to the following:

Li st <T> & w hi chLi s t = t heLis t s[h ash(x, t heLi s t s . s iz e())] ;
Li st It r <T> i t r = whi chLi st .f i nd(x) ;
i f (it r . i sPast End())
 whi chLi st . i nser t (x , w hi chLi s t . zero t h()) ;

4. The const here means that the object being returned cannot itself be modified later on. It is different from the
const in the parameter list and the const that signifies an accessor.

C++.mkr Page 13 Wednesday, December 9, 1998 7:27 AM

A reference variable is used so that the considerably more complex expression,
t heList s [h ash (x,t heLi st s .s i ze())] , does not have to be written three
times.

Reference variables can be used as class data members, though we do not do
this in the text (however, an Exercise in Chapter 3 suggests a design that uses a
reference variable as a data member). References must be initialized by the con-
structor to the object that they will reference.

2.5 The Big Three: destructor, copy constructor, operator=

In C++, classes come with three special functions that are already written for you.
These are the destructor, copy constructor, and oper at or =. In many cases you
can accept the default behavior provided by the compiler. Sometimes you cannot.

Destructor

The destructor is called whenever an object goes out of scope or is subjected to a
delete . Typicall y, the only responsibil ity of the destructor is to free up any
resources that were allocated during the use of the object. This includes call ing
del et e for any corresponding news, closing any files that were opened, and so
on. The default simply applies the destructor on each data member.

Copy constructor

There is a special constructor that is required to construct a new object, initialized
to a copy of the same type of object. This is the copy constructor. For any object,
such as an IntCell object, a copy constructor is call ed in the foll owing
instances:

• a declaration with initialization, such as

I nt Cel l B = C ;
I nt Cel l B (C) ;

but not

B = C; / / As s i gnment op er at or , d i scussed l at er

• an object passed using call by value (instead of by & or const &), which,
as mentioned earlier, should never be done anyway.

• an object returned by value (instead of by & or const &)

The first case is the simplest to understand because the constructed objects were
explicitly requested. The second and third cases construct temporary objects that
are never seen by the user. Even so, a construction is a construction, and in both
cases we are copying an object into a newly created object.

C++.mkr Page 14 Wednesday, December 9, 1998 7:27 AM

 By default the copy constructor is implemented by applying copy construc-
tors to each data member in turn. For data members that are primitive types (for
instance, i nt , doubl e, or pointers), simple assignment is done. This would be
the case for the st or edVal ue data member in our In t Cel l class. For data
members that are themselves class objects, the copy constructor for each data
member’s class is applied to that data member.

operator=

The copy assignment operator, opera t or= , is called when = is applied to two
objects, after they have both been previously constructed. l hs= r hs is intended
to copy that state of rhs into l hs . By default the ope r ato r = is implemented
by applying oper at or = to each data member in turn.

Problems with the defaults

If we examine the I ntCe l l class, we see that the defaults are perfectly accept-
able, and so we do not have to do anything. This is often the case. If a class con-
sists of data members that are exclusively primiti ve types and objects for which
the defaults make sense, the class defaults wil l usually make sense. Thus, a class
whose data members are int , doubl e, vector<int> , string , and even
vect or <st r i ng> can accept the defaults.

The main problem occurs in a class that contains a data member that is a
pointer. We will describe the problem and solutions in detail in Chapter 3; for
now we can sketch the problem. Suppose the class contains a single data member
that is a pointer. This pointer points at a dynamically allocated object. The default
destructor for pointers does nothing (for good reason — recall that we must
del et e ourselves). Furthermore, the copy constructor and oper at or = both
copy not the objects being pointed at, but simply the value of the pointer. Thus we
wil l simply have two class instances that contain pointers that point to the same
object. This is a so-called shallow copy. Typically, we would expect a deep copy,
in which a clone of the entire object is made. Thus, when a class contains pointers
as data members, and deep semantics are important, we typically must implement
the destructor, oper at or= , and copy constructor ourselves.

For I nt Cel l , the signatures of these operations are:

 ~I nt Cel l () ; / / d est r uct or
 In t Cel l (c ons t I nt Cel l & r hs) ; / / c opy c onstr uct or
 const I nt Cell & o per at or =(c onst In t Cel l & r hs) ;

Although the defaults for I nt Cel l are acceptable, we can write the imple-
mentations anyway, as shown in Figure 9. For the destructor, after the body is
executed, the destructors are called for the data members. So the default is an
empty body. For the copy constructor, the default is an initializer list of copy con-
structors, followed by execution of the body.

C++.mkr Page 15 Wednesday, December 9, 1998 7:27 AM

oper at or = is the most interesting. Line 1 is an alias test, to make sure we
are not copying to ourselves. Assuming we are not, we apply oper at or = to
each data member (at line 2). We then return a reference to the current object, at
line 3, so assignments can be chained, as in a=b=c .

In the routines that we write, if the defaults make sense, we wil l always
accept them. However, if the defaults do not make sense, we will need to imple-
ment the destructor, and oper at or =, and the copy constructor. When the
default does not work, the copy constructor can generally be implemented by
mimicing normal construction and then call ing oper at or =. Another often-used
option is to give a reasonable working implementation of the copy constructor,
but then place it in the pr i vat e section, to disallow call by value.

When The Defaults Do Not Work

The most common situation in which the defaults do not work occurs when a data
member is a pointer type, and the pointee is allocated by some object member
function (such as the constructor). As an example, suppose we implement the
I nt Cel l by dynamically allocating an i nt , as shown in Figure 10. For simplic-
ity, we do not separate the interface and implementation.

 I nt Cel l : : ~I nt Cel l ()
 {
 / / D oes n ot hi ng s i nce I nt Cel l c ont ai ns o nl y a n i nt d at a
 / / m ember . I f I nt Cel l c ont ai ned a ny c l ass o bj ect s t hei r
 / / d est r uc t or s w oul d b e c al l ed.
 }

 I nt Cel l : : I nt Cel l (c onst I nt Cel l & r hs)
 {
 }

 c onst I nt Cel l & I nt Cel l : : oper at or =(c onst I nt Cel l & r hs)
 {
/ * 1 * / i f (t hi s ! = & r hs) / / S t andar d a l i as t es t
/ * 2 * / s t or edVal ue = r hs. st or edVal ue;
/ * 3 * / r et ur n * t hi s ;
 }

Figure 9 The defaults for the big three

C++.mkr Page 16 Wednesday, December 9, 1998 7:27 AM

 c l ass I nt Cel l
 {
 p ubl i c :
 e xpl i c i t I nt Cel l (i nt i ni t i al Val ue = 0)
 { s t or edVal ue = n ew i nt (i ni t i al Val ue) ; }

 i nt r ead() c onst ;
 { r et ur n * st or edVal ue; }
 voi d w r i t e(i nt x) ;
 { * s t or edVal ue = x ; }
 pr i vat e:
 i nt * s t or edVal ue;
 } ;

Figure 10 Data member is a pointer; default are no good

There are now numerous problems that are exposed in Figure 11. First, the
output is three 4s, even though logically only a should be 4. The problem is that
the default opera t or = and copy constructor copy the pointer st or edVal ue.
Thus a. st or edVal ue, b. st or edVal ue, and c. st or edVal ue all point
at the same i nt value. These copies are shallow: the pointers, rather than the
pointees are copied. A second less-obvious problem is a memory leak. The i nt
initially allocated by a’ s constructor remains allocated and needs to be reclaimed.
The i nt allocated by b and c ’ s constructor is no longer referenced by any
pointer variable. They also need to be reclaimed, but we no longer have a pointer
to it.

To fix these problems, we implement the big three. The result (with the inter-
face and implementation separated) is shown in Figure 12. Generally speaking, if
a destructor is necessary to reclaim memory, then the defaults for copy assign-
ment and copy construction are not acceptable.

If the class contains data members that do not have the ability to copy them-
selves, then the default oper at or = wil l not work. We will see some examples
of this later in the text.

 i nt f ()
 {
 I nt Cel l a (2) ;
 I nt Cel l b = a ;
 I nt Cel l c ;

 c = b ;
 a. wr i t e(4) ;
 c out < < a . r ead() < < e ndl < < b . r ead() < < e ndl < < c . r ead() << e ndl ;
 r et ur n 0 ;
 }

Figure 11 Simple function that exposes problems in Figure 10

C++.mkr Page 17 Wednesday, December 9, 1998 7:27 AM

 c l ass I nt Cel l
 {
 p ubl i c :
 e xpl i c i t I nt Cel l (i nt i ni t i al Val ue = 0) ;

 I nt Cel l (c onst I nt Cel l & r hs) ;
 ~ I nt Cel l () ;
 c onst I nt Cel l & o per at or =(c onst I nt Cel l & r hs) ;

 i nt r ead() c onst ;
 voi d w r i t e(i nt x) ;
 pr i vat e:
 i nt * s t or edVal ue;
 } ;

 I nt Cel l : : I nt Cel l (i nt i ni t i al Val ue)
 {
 s t or edVal ue = n ew i nt (i ni t i al Val ue) ;
 }

 I nt Cel l : : I nt Cel l (c onst I nt Cel l & r hs)
 {
 s t or edVal ue = n ew i nt (* r hs. st or edVal ue) ;
 }

 I nt Cel l : : ~I nt Cel l ()
 {
 d el et e s t or edVal ue;
 }

 c onst I nt Cel l & I nt Cel l : : oper at or =(c onst I nt Cel l & r hs)
 {
 i f (t hi s ! = & r hs)
 * s t or edVal ue = * r hs. st or edVal ue;
 r et ur n * t hi s ;
 }

 i nt I nt Cel l : : r ead() c onst
 {
 r et ur n * st or edVal ue;
 }

 v oi d I nt Cel l : : wr i t e(i nt x)
 {
 * s t or edVal ue = x ;
 }

Figure 12 Data member is a pointer; big three needs to be written

C++.mkr Page 18 Wednesday, December 9, 1998 7:27 AM

2.6 The World of C

C++ inherits its basic syntax from C. Some C-style constructs are occasionally
seen in C++, even though C++ provides alternatives. We list a few of these.

structs

In C++, a st ruct is exactly li ke a c l ass except that by default, all members
are publ i c . There is no other semantic difference. As a result, it is easy to write
a C++ program that never uses st r uct . Even so, a str uct is commonly used
to signal a cl ass that contains only publi c data and constructors, since such a
cl ass behaves like a C-style st r uct .

typedef

The t ypedef is used to indicate that a symbol should be a synonym for an exist-
ing type. For instance,

t ypedef s t r i ng * pt r _t o_st ri ng;

says that ptr_ t o_string is a synonym for the string* type. typedef is
less-often used in C++ than C because in many cases it is better to define a new
class that encapsulates the behavior of this type that to use a t ypedef .

There are two common uses of the t ypedef . One is to define system-
dependent information. Thus, the type i nt 32, representing a thirty-two bit inte-
ger, could be a t ypedef defined in a header file. On some machines it would be
an i nt , on others it could be a shor t , and on others it could be a l ong. A sec-
ond use is to provide a synonym for a long type name. Long type names are com-
mon when templates (especially in the STL) are instantiated. An example of this
is in Appendix A.

Parameter Passing: C-Style

In C, all parameters are passed using call -by-value. However, C programmers
often need to pass using call -by-reference. Since this is not possible in C, a com-
monly used trick is used: a pointer to the object is passed instead of the object.
Call-by-value means that the value of the pointer (where it points) cannot change,
but does not disallow changing the pointee. To illustrate the idiom, we show how
an integer is passed by reference. The function zer o will change the object being
pointed at to 0. zer o declares:

voi d zer o(i nt *v al) { * val = 0 ; }

The function call is made by passing the address of x to function zero:

 in t x = 5 ; / / O bj ec t x h as v al ue 5
 ze r o(& x) ; / / O bj ec t x w i l l ha ve v al ue 0

C++.mkr Page 19 Wednesday, December 9, 1998 7:27 AM

Passing using C++ call by reference is preferable to this idiom. However,
many libraries are written to work with both C and C++, and thus pass variables
using the C-style. Thus you may need to use this idiom. We do not use elsewhere
in the text.

C-Style Arrays and Strings

The C++ language provides a built -in C-style array type. To declare an array,
ar r , of ten integers, one writes:

i nt ar r 1[10] ;

arr 1 is actually a pointer to memory that is large enough to store 10 i nt s,
rather than a first-class array type. Applying = to arrays is thus an attempt to copy
two pointer values, rather than the entire array, and with the declaration above is
illegal because arr1 is a constant pointer. When arr1 is passed to a function,
only the value of the pointer is passed; information about the size of the array is
lost. Thus the size must be passed as an additional parameter. There is no index
range checking, since the size is unknown.

In the declaration above, the size of the array must be known at compile time.
10 cannot be replaced by a variable. If the size is unknown, we must explicitly
declare a pointer and allocate memory via new[] . For instance,

i nt *a r r 2 = n ew i nt [n] ;

Now ar r 2 behaves like arr 1 except that it is not a constant pointer. Thus it can
be made to point at a larger block of memory. However, because memory has
been dynamically allocated, at some point it must be freed with del et e[] :

del ete [] a r r 2;

Otherwise, a memory leak would result, and the leak could be significant, if the
array is large.

Buil t-in C-style strings are implemented as an array of characters. To avoid
having to pass the length of the string, the special null-terminator ' \ 0' is used as
a character that signals the logical end of the string. Strings are copied by
st r cpy , compared with st r cmp, and their length can be determined by
st r l en. Individual characters can be accessed by the array indexing operator.
These strings have all the problems associated with arrays, including diff icult
memory management, compounded by the fact that when strings are copied, it is
assumed that the target array is large enough to hold the result. When it is not, dif-
ficult debugging ensues, especially when room has not be left for the null termi-
nator.

Appendix B describes a vect or class and a st r i ng class, that are imple-
mented by hiding the behavior of the built-in C-style array and string. By study-
ing that class, you can see how C-style arrays and strings are manipulated. It is

C++.mkr Page 20 Wednesday, December 9, 1998 7:27 AM

almost always better to use the vect or and st r i ng class in Appendix B (or the
ones defined in the C++ library, if your compiler is current), but you may be
forced to use the C-style when interacting with library routines that are designed
to work with both C and C++. It also is occasionally necessary (but this is rare) to
use the C-style in a section of code that must be optimized for speed.

3 Templates

Consider the problem of f inding the largest item in an array of items. A simple
algorithm is the sequential scan, in which we examine each item in order, keeping
track of the maximum. As is typical of many algorithms, the sequential scan algo-
rithm is type-independent. By type-independent, we mean that the logic of this
algorithm does not depend on the type of items that are stored in the array. The
same logic works for an array of integers, floating-point numbers, or any type for
which comparison can be meaningfully defined.

Throughout this text, we wil l describe algorithms and data structures that are
type independent. When we write C++ code for a type-independent algorithm or
data structure, we would prefer to write the code once, rather than recode it for
each different type.

In this section we will describe how type-independent algorithms (also
known as generic algorithms) are written in C++. C++ provides the template. We
begin by discussing function templates. Then we examine class templates.

3.1 Function templates

Function templates are generally very easy to write. A function template is not an
actual function, but instead is a pattern for what could become a function. Figure
13 illustrates a function template f i ndMax that is virtuall y identical to the rou-
tine for st r i ng shown in Figure 8. The line containing the t empl at e declara-
tion indicates that Compar abl e is the template argument: it can be replaced by
any type to generate a function. For instance, if a call to f i ndMax is made with a
vect or <st r i ng> as parameter, then a function will be generated by replacing
Compar abl e with st r i ng.

C++.mkr Page 21 Wednesday, December 9, 1998 7:27 AM

 / * *
 * R et ur n t he maxi mum i t em i n a r r ay a .
 * A ssumes a . s i ze() > 0 .
 * C ompar abl e o bj ect s m ust p r ovi de
 * copy c onst r uc t or , o per at or <, o per at or =
 * /
 t empl at e < cl ass C ompar abl e>
 const C ompar abl e & f i ndMax(c onst v ect or <Compar abl e> & a)
 {
/ * 1 * / i nt m axI ndex = 0 ;

/ * 2 * / f or (i nt i = 1 ; i < a . s i ze() ; i ++)
/ * 3 * / i f (a [m axI ndex] < a [i])
/ * 4 * / maxI ndex = i ;
/ * 5 * / r et ur n a [m axI ndex] ;
 }

Figure 13 f i ndMax function template

 i nt m ai n()
 {
 v ect or <i nt > v 1(3 7) ;
 vect or <doubl e> v 2(4 0) ;
 vect or <st r i ng> v 3(8 0) ;
 vect or <I nt Cel l > v 4(7 5) ;

 / / A ddi t i onal c ode t o f i l l i n t he v ect or s

 c out < < f i ndMax(v 1) < < e ndl ; / / O K: C ompar abl e = i nt
 c out < < f i ndMax(v 2) < < e ndl ; / / O K: C ompar abl e = d oubl e
 c out < < f i ndMax(v 3) < < e ndl ; / / O K: C ompar abl e = s t r i ng
 c out < < f i ndMax(v 4) < < e ndl ; / / I l l egal ; o per at or < u ndefi ned

 r et ur n 0 ;
 } ;

Figure 14 Using f i ndMax function template

Figure 14 illustrates that function templates are expanded automatically as
needed. It should be noted that an expansion for each new type generates addi-
tional code; this is known as code bloat, when it occurs in large projects. Note
also, that the call f i ndMax(v4) will result in a compile-time error. This is
because when Compar abl e is replaced by I nt Cel l , line 3 in Figure 13
becomes illegal: there is no < function defined for I nt Cel l . Thus it is custom-
ary to include, prior to any template, comments that explain what assumptions are
made about the template argument(s). This includes assumptions about what
kinds of constructors are required. Also note that f i ndMax does not work with
C-style strings, because oper at or < for two char * compares pointer values.

C++.mkr Page 22 Wednesday, December 9, 1998 7:27 AM

Because template arguments can assume any class type, when deciding on
parameter passing and return passing conventions, it should be assumed that tem-
plate arguments are not primitive types. That is why we have returned by constant
reference.

Not surprisingly, there are many arcane rules that deal with function tem-
plates. Most of the problems occur when the template cannot provide an exact
match for the parameters, but can come close (through implicit type conversions).
There must be ways to resolve ambiguities and the rules are quite complex. Note
that if there is a non-template and a template, and both match, then the non-tem-
plate gets priority. Also note that if there are two equally close approximate
matches, then the code is il legal and the compiler will declare an ambiguity.

It is important to note that for most compilers, function templates cannot be
separately compiled. Generally their entire definition will be placed in . h files
that are included by anyone that might need them.

3.2 Class Templates

In the simplest version, a class template works much li ke a function template.
Figure 15 shows the Memor y Cell template. Memor y Cel l is l ike the
IntC ell class but works for any type, Obje c t , provided that Obj ect has a
zero-parameter constructor, a copy constructor, and a copy assignment operator.

Notice that Obj ect is passed by constant reference. Also, notice that the
default parameter for the constructor is not 0, because 0 might not be a valid
Obj ect . Instead the default parameter is the result of constructing an Obj ect
with its zero-parameter constructor.

 / * *
 * A c l ass f or s i mul at i ng a m emor y c el l .
 * /
 t empl at e < cl ass O bj ect >
 c l ass M emor yCel l
 {
 p ubl i c :
 expl i c i t M emor yCel l (c onst O bj ect & i ni t i al Val ue = O bj ect ())
 : s t or edVal ue(i ni t i al Val ue) { }
 const O bj ect & r ead() c onst
 { r et ur n s t or edVal ue; }
 voi d w r i t e(c onst O bj ect & x)
 { s t or edVal ue = x ; }
 pr i vat e:
 Obj ect s t or edVal ue;
 } ;

Figure 15 Memory Cel l template class without separation

C++.mkr Page 23 Wednesday, December 9, 1998 7:27 AM

 i nt m ai n()
 {
 Memor yCel l <i nt > m1;
 Memor yCel l <s t r i ng> m2(" hel l o") ;

 m1. wr i t e(3 7) ;
 m2. wr i t e(m 2. r ead() + " w or l d") ;
 cout < < m1. r ead() < < e ndl < < m2. r ead() < < e ndl ;

 r et ur n 0 ;
 }

Figure 16 Program that uses Memor yCel l template class

 / * *
 * A c l ass f or s i mul at i ng a m emor y c el l .
 * /
 t empl at e < cl ass O bj ect >
 c l ass M emor yCel l
 {
 p ubl i c :
 e xpl i c i t M emor yCel l (c onst O bj ect & i ni t i al Val ue = O bj ect ()) ;
 c onst O bj ect & r ead() c onst ;
 v oi d w r i t e(c onst O bj ect & x) ;
 p r i vat e:
 O bj ect s t or edVal ue;
 } ;

Figure 17 Memory Cel l template class interface

Figure 16 shows how the Memor yCel l can be used to store objects of both
primitive and class types. Notice that Memor yCel l is not a class; it is only a
class template. Memor yCel l <i nt > and Memor yCel l <st r i ng> are the
actual classes.

If we implement class templates as a single unit, then there is very little syn-
tax baggage. Many class templates are, in fact, implemented this way because
currently, separate compilation of templates does not work well on many plat-
forms. Therefore, in many cases, the entire class, with its implementation must be
placed in a . h file. Popular implementations of the STL follow this strategy.

However, eventually, separate compilation wil l work, and it will be better to
separate the class templates interface and implementation in the same way that is
done for classes. Unfortunately, this does add some syntax baggage.

Figure 17 shows the interface for the template class. That part is, of course,
simple enough, since it is just a subset of the entire class that we have already
seen.

C++.mkr Page 24 Wednesday, December 9, 1998 7:27 AM

 # i nc l ude " Memor yCel l . h"

 / * *
 * C onst r uct t he M emor yCel l w i t h i ni t i al Val ue
 * /
 t empl at e < cl ass O bj ect >
 Memor yCel l <Obj ect >: : Memor yCel l (c onst O bj ect & i ni t i al Val ue)
 : s t or edVal ue(i ni t i al Val ue)
 {
 }

 / * *
 * R et ur n t he s t or ed v al ue.
 * /
 t empl at e < cl ass O bj ect >
 const O bj ect & M emor yCel l <Obj ect >: : r ead() c onst
 {
 r et ur n s t or edVal ue;
 }

 / * *
 * S t or e x .
 * /
 t empl at e < cl ass O bj ect >
 voi d M emor yCel l <Obj ect >: : wr i t e(c onst O bj ect & x)
 {
 s t or edVal ue = x ;
 }

Figure 18 Memory Cel l template class implementation

For the implementation, we have a collection of function templates. This
means that each function must include the template line, and when using the
scope operator, the name of the class must be instantiated with the template argu-
ment. Thus in Figure 18, the name of the class is Memor yCel l <Obj ect >.
Although the syntax seem innocuous enough, it can get fairly substantial. For
instance, to define oper at or = in the interface requires no extra baggage. In the
implementation, we would have:

t empla t e < c l ass Obj ect >
const Memor yCel l< Obj ect > &
Memory Cel l <Obj ect >: : oper at or =(c onst Me mor yCel l <Obje ct > & r hs)
{
 if (t hi s ! = &r hs)
 s t or edVal ue = r hs. st or edVal ue;
 re t ur n * t hi s;
}

C++.mkr Page 25 Wednesday, December 9, 1998 7:27 AM

Typically, the declaration part of the more complex functions will no longer
fit on one line, and will need splitting as done above.

Even if the interface and implementation of the class template are separated,
few compilers will automatically handle separate compilation correctly. The sim-
plest, most portable solution, is to add an #i ncl ude directive at the end of the
interface file, to import the implementation. This is done in the online code.
Alternative solutions involve adding explicit instantiations for each type as a sep-
arate . cpp file in the project. Since these details will change rapidly, it’s best to
consult local documentation to find the proper alternative.

3.3 Object, Comparable, and an Example

In this text, we repeatedly use Obj ec t and Compar abl e as generic types.
Obj ect is assumed to have a zero parameter constructor, an oper at or =, and a
copy constructor. Comparable , as suggested in the findMax example, has
additional functionali ty in the form of oper at or < that can be used to provide a
total order.5

Figure 19 shows an example of a class type that implements the functionality
required of Compar abl e. The Empl oyee class contains a name and a sal -
ar y , and defines oper at or < on the basis of sal ar y . A more complicated
oper at or < is possible; for instance, we could break a tie in sal ar y by using
the name data member. The Empl oyee class also provides a zero-parameter
constructor, oper at or =, and copy constructor (all by default). Thus it has
enough to be used as a Compar abl e in f i ndMax .

To have practical utility, either its data members must be public, or we must
provide additional accessors and mutators. Figure 19 shows a set Val ue mem-
ber function, and also illustrates the widely-used idiom for providing an output
function for a new class type. The idiom is to provide a publ i c member func-
tion, named pr i nt that takes an ost r eam as a parameter. That publ i c mem-
ber function can then be called by a global, non-class function oper at or <<,
that accepts an ost r eam and an object to output.6

5. Some of the data structures in Chapter 12 use oper at or == in addition to oper at or <. Note that for the pur-
pose of providing a total order, a==b if both a<b and b<a are f al se; thus the use of oper at or == is sim-
ply for convenience.

6. An alternative to this idiom is to have oper at or << directly implement the logic in pr i nt . Because
oper at or << is not a class member, it would need to be made a f r i end function of the Empl oyee class,
requiring the introduction of even more C++ syntax. This alternative has the additional disadvantage of not
working on older compilers that do not correctly mix f r i end declarations with global template functions. It
also has the disadvantage of not working correctly in more complex contexts involving inheritance, that are
beyond the scope of this text.

C++.mkr Page 26 Wednesday, December 9, 1998 7:27 AM

 c l ass E mpl oyee
 {
 p ubl i c :
 v oi d s et Val ue(c onst s t r i ng & n , d oubl e s)
 { n ame = n ; s al ar y = s ; }

 v oi d p r i nt (o s t r eam & o ut) c onst
 { o ut < < n ame < < " (" < < s al ar y < < ") " ; }
 b ool o per at or < (c onst E mpl oyee & r hs) c onst
 { r et ur n s al ar y < r hs. sal ar y ; }

 / / O t her g ener al a ccessor s a nd m ut at or s, n ot s hown
 p r i vat e:
 s t r i ng n ame;
 d oubl e s al ar y;
 } ;

 / / D ef i ne a n o ut put o per at or f or E mpl oyee
 o s t r eam & o per at or << (o st r eam & o ut , c onst E mpl oyee & r hs)
 {
 r hs. pr i nt (o ut) ;
 r et ur n o ut ;
 }

 i nt m ai n()
 {
 v ect or <Empl oyee> v (3) ;

 v [0] . set Val ue(" Bi l l C l i nt on" , 2 00000. 00) ;
 v [1] . set Val ue(" Bi l l G at es" , 2 000000000. 00) ;
 v [2] . set Val ue(" Bi l l y t he Mar l i n" , 6 0000. 00) ;
 c out < < f i ndMax(v) < < e ndl ;

 r et ur n 0 ;
 }

Figure 19 Comparable can be a class type, such as Empl oyee

4 Using Matrices

Several algorithms in Chapter 10 use two-dimensional arrays, which are popu-
larly known as matrices. The C++ l ibrary does not provide a mat ri x class.
However, a reasonable mat r i x class can be quickly written. The basic idea is to
use a vector of vectors. Doing this requires knowledge of operator overloading.
Operator overloading allows us to define the meaning of a built-in operator. Actu-
ally, we’ve already done this when we define oper at or =. For the mat r i x , we
define oper at or [] , namely the array-indexing operator. The mat r i x class is
in Figure 20.

C++.mkr Page 27 Wednesday, December 9, 1998 7:27 AM

4.1 The data members, constructor, and basic accessors

The matrix is represented by an ar r ay data member that is declared to be a
vect or of vec t or <Obj ec t >. The constructor first constructs ar r ay , as
having r ows entries each of type ve c to r <Obje c t> that is constructed with
the zero-parameter constructor. Thus we have r ows zero-length vectors of
Obj ect .

 t empl at e < cl ass O bj ect >
 c l ass m at r i x
 {
 p ubl i c :
 mat r i x (i nt r ows, i nt c ol s) : a r r ay(r ows)
 {
 f or (i nt i = 0 ; i < r ows; i ++)
 a r r ay[i] . r es i ze(c ol s) ;
 }
 const v ect or <Obj ect > & o per at or [] (i nt r ow) c onst
 { r et ur n a r r ay [r ow] ; }
 v ect or <Obj ect > & o per at or [] (i nt r ow)
 { r et ur n a r r ay [r ow] ; }
 i nt n umr ows() c onst
 { r et ur n a r r ay . s i ze() ; }
 i nt n umcol s() c onst
 { r et ur n n umr ows() ? a r r ay[0] . s i ze() : 0 ; }
 pr i vat e:
 v ect or < v ect or <Obj ect > > a r r ay ;
 } ;

Figure 20 A complete matr i x class

The body of the constructor is then entered and each row is resized to have
col s columns. Thus the constructor terminates with what appears to be a two-
dimensional array. The numr ows and numcol s accessors are then easily imple-
mented as shown.

4.2 operator[]

The idea of operator[] is that if we have a matrix m, then m[i] should
return a vector corresponding to row i of matrix m. I f this is done, then
m[i][j] will give the entry in position j for vector m[i] , using the normal
vect or indexing operator. Thus the mat r i x oper at or [] is to return not an
Obj ect , but instead a vect or <Obj ect >.

We now know that oper at or [] should return an entity of type
vect or <Obj ect >. Should we use return by value, by reference, or by constant

C++.mkr Page 28 Wednesday, December 9, 1998 7:27 AM

reference? Immediately we eliminate return by value, because the returned entity
is large, but guaranteed to exist after the call. Thus we are down to return by ref-
erence or by constant reference. Consider the following method (ignore the possi-
bili ty of aliasing or incompatible sizes, neither of which affects the algorithm).

voi d copy(c onst mat r i x<i nt> & f r om, ma t r i x<i nt > & t o)
{
 fo r (i nt i = 0; i < t o.n umr ows() ; i ++)
 t o[i] = f r om[i];
}

In the copy function, we attempt to copy each row in mat r i x f r om into
the corresponding row in mat r i x t o. Clearly, if oper at or [] returns a con-
stant reference, then t o[i] cannot appear on the left side of the assignment
statement. Thus it appears that oper at or [] should return a reference. But then
an expression such as f r om[i] =t o[i] would compile, since f r om[i] would
not be a constant vector, even though f r om was a constant matrix. Oops!

So what we really need is for oper at or [] to return a constant reference
for f r om, but a plain reference for t o. In other words, we need two versions of
oper at or [] , that differ only in their return types. That is not allowed. How-
ever, there is a loophole: since member function constness (that is, whether a
function is an accessor or a mutator) is part of the signature, we can have the
accessor version of oper at or [] return a constant reference, and have the
mutator version return the simple reference. Then all is well. This is shown in
Figure 20.

4.3 Destructor, copy assignment, copy constructor

These are all taken care of automaticall y because the vec t or has taken care of
it. Thus this is all the code needed for a fully functioning mat r i x class.

C++.mkr Page 29 Wednesday, December 9, 1998 7:27 AM

