
1/4/02 1

The Object Class

Mark Allen Weiss

Copyright 2000

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 2

java.lang.Object

● All classes either extend Object directly or
indirectly.
– Makes it easier to wr ite gener ic algor ithms and data

structures
– Makes it easy to treat all objects same (for instance

with respect to automatic calls to toString)

● Every non pr imitive IS-A Object

● Object has several methods.
● Object is not an abstract class, so all methods

have implementations

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 3

Important Methods In Object

● getClass

● toString

● equals

● hashCode

● clone

● finalize

● wait

● notifyAll

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 4

wait and notifyAll

● Used for threading
● We’ ll discuss those in a few weeks, but when we

do, remember that these methods are defined
in Object.

getClass

● Returns a Class object that represents
information about the type of the object.

● Every type has a single Class object.

● Two objects with same Class are of same type
class Person { ... }

class Employee extends Person { ... }

Object o1 = new Person(...);

Object o2 = new Employee(...);

Object o3 = new Employee(...);

Object o4 = new Person[5]; // Arrays are objects

Class c1 = o1.getClass(); // Returns Person.class

Class c2 = o2.getClass(); // Returns Employee.class

Class c3 = o3.getClass(); // Returns Employee.class

Class c4 = o4.getClass(); // Returns Person[].class

// Note: c2 == c1 is false, c2 == c3 is true

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 6

Class objects

● Will discuss more details when we talk about
reflection.

● Can get name of the class with getName.

● Also, toString is defined.

Object o1 = ...; // can reference any object

Class c1 = o1.getClass();

System.out.println("Type of o1 is " + c1.getName());

System.out.println("Type of o1 is " + c1.toString());

System.out.println("Type of o1 is " + c1);

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 7

toString

● Automatically called on an object when the
object is concatenated with a String.

● The default pr ints the name of the class and
object’s hash code; you can expect that
different objects (even with same state) will be
identified differently by toString.

● Can overr ide the default to pr int out your
meaningful version.

● Common to chain calls to superclass.
● Don’ t hard code class name into toString

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 8

Example of toString With Chaining
class Person

{ ...

public String toString()

{ return getClass.toString() + " " + getName(); }
public String getName()

{ return name; }

private String name;

private Date birthDate;
}

class Student extends Person

{ ...
public String toString()

{ return super.toString() + " " + getID(); }

public int getID()

{ return id; }
private int id;

}

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 9

equals

● Used to determine if two references refer to
Objects that have same state.

● Default in Object is to return true only if the
two references are not null and are equal
(cannot invoke equal with a null reference) .

● Can overr ide default; that’s what String
does, for example.

● The method to overr ide is
public boolean equals(Object other)

● Common pitfall to use wrong signature.

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 10

Contract of equals

● I f compar ing with null, must return false.
● Reflexive: x.equals(x) must be true
● Symmetr ic: x.equals(y) is the same as
y.equals(x), if neither is null

● Transitive: x.equals(y) and y.equals(z)
both being true implies x.equals(z) must be
true (if exactly one is true, x.equals(z)
must be false).

● x.equals(y) should always give the same
answer, unless the states of x or y change.

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 11

So What’s The Big Deal?

● Contract is tr ickier than it looks when
compar ing base class objects with der ived class
objects.
– some implementations crash because of null or

assumption of cor rect type
– some implementations uses instanceof in both

classes and fail the symmetr ic requirement
– there’s an additional requirement that hashCode

must be implemented consistent with equals

● JDK 1.3 source has over 130 incorrect equals
implementations

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 12

Standard Preamble

● Generally, two objects should only compare
equal if types match exactly, or types are in the
same hierarchy, but equals is never overr idden
beyond initial base class (i.e. equals is final).

● In second case, can probably use instanceof.

● In first case, star t code with:
public boolean equals(Object obj)

{

if(obj == null || getClass() != obj.getClass())

return false;

● When overr iding equals in der ived class, chain
up to base class via super .

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 13

Example of equals With Chaining
class Person

{ ...

public boolean equals(Object obj) {

if(obj == null || getClass() != obj.getClass())

return false;

Person other = (Person) obj;

return getName().equals(other.getName());

}

}

class Student extends Person

{ ...

public boolean equals(Object obj) {

if(!super.equals(obj))

return false; // handles null and same class

Student other = (Student) obj;

return getID() == other.getID();

}

}

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 14

hashCode

● Used in Hashtable, HashSet, and HashMap
containers

● Returns an int

● Contract is that if x.equals(y) is true,
x.hashCode() must equal y.hashCode()

● Expectation is that if x.equals(y) is false,
hash codes are almost cer tainly different

● Same pr inciples as before: use chaining
● I f you mess up hashCode, your objects will

not be found in the hashing containers.

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 15

Example of hashCode With Chaining
class Person

{ ...

public int hashCode()

{

return getName().hashCode();

}

}

class Student extends Person

{ ...

public int hashCode()

{

return super.hashCode() ^ getID(); // exclusive or

}

}

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 16

Cloning
● Object defines a clone method that returns a

new Object of the same type, with the
expectation of the same state.

● Only objects that implement the Cloneable
inter face can call clone without generating a
CloneNotSupportedException

● The Cloneable inter face is a tagged interface;
no methods, just something you have to say.

● The implementation in Object is magic:
– Does a shallow copy, so others can chain up to it
– I f called directly, however , will throw an exception

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 17

Tricky Stuff

● Never use a constructor to create the new
object; instead delegate to super.clone.

● I f possible, use clone on the additional
reference fields in the der ived class.

● Str ings don’ t need cloning
● Implement the Cloneable interface

● Make clone method public

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 18

Example of clone With Chaining
class Person

{ ...

public Object clone() throws CloneNotSupportedException {

Object copy = super.clone();

((Person)copy).birthDate = (Date) birthDate.clone();
return copy;

}

}

class Student extends Person

{ ...
public Object clone() throws CloneNotSupportedException {

Object copy = super.clone();

// no other deep copies needed

return copy;

}

}

class Undergrad extends Student

{ ...

}

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 19

finalize

● Not a reliable routine; might never be invoked
● I f invoked by VM, will never be invoked again

by VM

● Leave protected; should only be called by
garbage collector

● Usual stuff if you implement: chain to the
superclass (last!)

● Also, try to catch exceptions
● Probably never need to wr ite finalize unless

you are doing demos of the garbage collector

Friday, January 04, 2002 Copyright 2000, M. A. Weiss 20

Summary
● Object class is root of all inher itance

● Defaults provided for all methods
● Implementations are tr icky for classes that use

inher itance
● equals and hashCode go together

