
1

1

Introduction to RMI

Mark Allen Weiss

Copyright 1999, 2000

2

Outline of Topics

● Basics of RMI
– RMI vs other solutions

– the bootstrap registry server

– stubs and skeletons

● Serving a remote object
● Using the remote object
● Preview of advanced issues

3

RMI Involves “Advanced” Topics

● Reflection
● Serialization
● Threading
● Security
● Networking

● Classloading
● Garbage Collection

2

4

RMI Basics

● Allows you to use objects that are on remote
machines.

● Supported starting with Java 1.1.
● 100% pure Java solution: the remote objects

must be written in Java.
● Other solutions:

– CORBA: Language and platform neutral;
communicate via Java IDL. However, Java IDL is
not standard yet.

– DCOM: Language neutral, but works only in an MS
world.

5

RMI Overview
● Remoteable objects implement the Remote

interface.
– Actually, abstract class RemoteObject

implements Remote
– Abstract class RemoteServer extends
RemoteObject

– Concrete class UnicastRemoteObject extends
RemoteObject

● Typically, extend UnicastRemoteObject.

● All methods in a Remoteable object must
declare that they throw RemoteException.

6

Remote Interfaces

● Remote objects are accessed through their
interfaces only.

● Typically, need to define a remote interface and
a remote object that implements the interface

● Remote interfaces
– Must be public
– Must extend the Remote interface

– All methods must declare RemoteException in
throws list

– Any remote parameters/return values must be
declared using their interface type

3

7

A Hello World Remote Object
import java.rmi.*;

import java.rmi.server.*;

public interface Hello extends Remote {

 void print() throws RemoteException;

}

// In a separate file:

public class HelloImpl extends UnicastRemoteObject

 implements Hello {

 public HelloImpl() throws RemoteException { }

 public void print() throws RemoteException {

 System.out.println("Hello world!");

 }

}

8

Serving a Remote Object

● Need to generate a stub and skeleton for the
remote class. Same idea as in native calls, and
in CORBA. Use rmic utility on server side.
– In Java 1.2, use -v1.2 option to generate stub only

– skeleton is implicit from stub

● Need to have a main method (or other function)
that creates instances of the remote object.

9

What Stub and Skeleton Do

● Stub provides implementation of remote
interface in the client VM.

● Stub serializes interface method calls and
arguments to remote skeleton. (Marshalling)

● Skeleton deserializes method calls
(unmarshalling), calls the desired method, and
returns a value or a RemoteException, either of
which is serialized back to the stub on the
remote client.

● The client stub deserializes the return value or
exception and rethrows any exception.

4

10

Class Loading

● The class representing the remote object must
be loaded on the client machine.

● Client has the interface, but not
implementation classes.

● Dynamic class loading can be used (like
applets) to get any new remote class
(implementations and stubs) that are needed;
want the security manager to check that these
dynamically loaded classes are ok.

11

Accessing Remote Objects

● If method returns remote object, can be
accessed through interface to it.

● First server object is special: need to use the
bootstrap registry service.

12

Registering Objects
● Use Naming.bind (or Naming.rebind).
● Client calls Naming.lookup (returns an
Object, that client can cast to the interface
type).

● Need to start the bootstrap registry. By default
it runs on port 1099. From an MS-DOS
window:
start rmiregistry portnum

● If your application is the only program using
the registry, can place, in main:
LocateRegistry.createRegistry(portnum);

5

13

Server Main
import java.rmi.*;

import java.rmi.server.*;

import java.rmi.registry.*;

public class HelloServer {

 public static void main(String [] args) {

 try {

 HelloImpl h = new HelloImpl();

 Naming.bind("hello", h);

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

}

14

Summary of Server-Side

● Write an interface and implementation for the
remote object.

● Run rmic to get the stub and skeleton.
● Write a main that creates the remote object,

and (if needed) installs it in the bootstrap
registry.

● Start the bootstrap registry.
● Start main.

15

The Client Side

● Must get the first remote object by using
Naming.lookup. Subsequent object interfaces
(that is, those returned as parameters) are
obtained automatically by the dynamic class
loader.

● Naming.lookup needs URL of server (possibly
including the port number) and name stored in
registry.

● Client accesses via the interface type only!
● Should install a security manager if really

doing remote stuff.

6

16

Using the Hello Remote Object
import java.rmi.*;

import java.rmi.registry.*;

public class HelloClient {

 public static void main(String [] args)

 {

 System.setSecurityManager(new RMISecurityManager());

 try {

 Object obj = Naming.lookup(args[0] + "hello");

 ((Hello) obj).print();

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

}

17

Method Parameters

● RMI uses Serialization to send remote
references, objects, and primitives.

● Thus remote method arguments that are
Objects must be either
– Remote objects
– Serializable

● This can be a pain:
– Somethings cannot be passed (e.g. Graphics).

● Notice: Remote method semantics are different
than local semantics when the parameter is a
non-remote Object.

18

Larger Example With DCL

● Will have server have object that can be
queried to give the host name and date.

● Client will be able to access this object.
● Client will have only

– Client class file

– Interface class file to remote object

● Client will not have
– Stub or implementation of remote object; these will

reside on the server and stub will be downloaded
when needed

7

19

The Hello Interface
import java.rmi.*;

import java.rmi.server.*;

public interface Hello extends Remote

{

String getMessage() throws RemoteException;

}

20

Security

● Client will be downloading stub class of the
remote object.
– should be safe, since generate by rmic
– but could be tampered with

– need a security manager and policy file
grant {

// Allow everything for now;

permission java.security.AllPermission;

};

21

The Implementation
import java.rmi.*;

import java.rmi.server.*;

import java.net.*;

import java.util.Date;

public class HelloImpl extends UnicastRemoteObject

 implements Hello {

 private static InetAddress me;

 static {

 try { me = InetAddress.getLocalHost(); }

 catch(java.net.UnknownHostException e) { }

 }

 public HelloImpl() throws RemoteException { }

 public String getMessage() throws RemoteException {

 Date now = new Date();

 System.out.println("Processing a request!");

 return "Hello from: " + me + " " + now;

 }

}

8

22

The Client
import java.rmi.*;

import java.rmi.registry.*;

public class HelloClient {

 public static void main(String [] args) {

 System.setProperty("java.security.policy", "all.policy");

 System.setSecurityManager(new RMISecurityManager());

 try {

 System.out.println("I AM THE CLIENT");

 String mach = args.length == 0 ? "" : args[0];

 Object obj = Naming.lookup("//" + mach + ":6000/hello");

 Hello hobj = (Hello) obj;

 System.out.println("Server returns: " + hobj.getMessage());

 }

 catch(Exception e) { e.printStackTrace(); }

 }

}

23

The Server
import java.rmi.*;

import java.rmi.server.*;

import java.rmi.registry.*;

public class HelloServer {

 public static void main(String [] args) {

 try {

 HelloImpl h = new HelloImpl();

 String mach = args.length == 0 ? "localhost" : args[0];

 Naming.rebind("//" + mach + ":6000/hello", h);

 System.out.println("I AM THE SERVER");

 }

 catch(Exception e) { e.printStackTrace(); }

}

}

24

The Setup

● Compile HelloImpl.java
● Run rmic -v1.2 HelloImpl
● Compile the client and server
● Copy to a server (can use servletrunner to

setup a webserver)
– interface, stub, implementation, server class file

● Remove from client
– stub, implementation, server class file (leave

interface and client)

9

25

Running Everything

● On server:
– unset CLASSPATH

– run rmiregistry with port 6000 in parent directory
cd ..
set CLASSPATH=

start rmiregistry 6000

– go to server directory
cd WEB-INF

– start server, with CLASSPATH that includes . and
define java.rmi.server.codebase=YourWebDir/

java -Djava.class.path=. -Djava.rmi.server.codebase=http://localhost:8080/ HelloServer

● On client
– start the client

26

Garbage Collection

● Distributed objects are garbage collected
● VM uses idea of a lease that is renewed

periodically by clients

27

Threading

● Server handles each request in separate thread
● Client thread is blocked until remote method

returns
● Synchronizing on reference on client does not

synchronize remote object; only synchronizes
stub

10

28

Summary

● RMI basics not too complicated.
● Write an interface that can be used by clients.
● Server generates stub and skeletons via rmic.
● On server side, need to start a bootstrap

registry, and bind at least one remote object.
● On client side, need to locate one remote object;

dynamic class loading gets other remote classes.

● Client needs to run with at least an RMI
security manager. Server should do the same.

