Mark Allen Weiss
Copyright 2000

Threads and Synchronization

Outline of Topics

What threads are
TheThre ad class and starting some threads

Synchronization: keegping threads from
clobbering each other

Deadlock avoidance: keeping threads from
stalling over each other




Multitasking

Multitasking means that you can have sever al
processes running at sametime, even if only
one pr ocessor .

Can run abrowser, VM, power point, print.job,
etc.

All modern operating systems support
multitasking

On asingle procesor system, multitasking is
an illusion projected by operating system

Threads

Inside each processcan have several threads

Each thread representsits own flow of logic
— gets sparate runtime stack

Modern operating systems support threading
too; more dficient than separate processes

Example of threading in a browser:

— separatethread downloads each image on a page
(could be one thread per image)

— separatethread displaysHTML

— separatethread allowstyping or pressng o stop
button

— makes browser look mor e responsive




Threads in C/C++

Threadsarenot part of C or C++

Haveto write different code for each operating
systems

Difficult to port

Threads in Java

Part of language
Same wdefor every Java VM
Simpler than in most other languages

Still very difficult:

— When running multiplethreads, thereis
nondeterminism, even on same machine

— Often hard to seethat your code has bugs
— Requireslots of experienceto do goal designs




Threads in the Virtual Machine

e VM hasthreadsin background

« VM aliveaslong asa“legitimatethread” still
around (illegitimate threads are“ daemons’)

e GUI programswill start separatethread to
handle events onceframeisvisible

#\, main thread

garbage wlledor Y,
event thread

(once montainer isvisible)

Thread Class

e UseThre ad classinj ava.l _ang

e Two most important instance methods:

— star t: Createsanew thread of exeaution in the
VM then, invokesrun in that thread of exeaution;
current thread also continues running

— run : explainswhat the thread should do

e Thr ead isnot abstract, so there are default
Implementations

— star t doeswhat isdescribed above; should be final
method (but isn’t)
— run returnsimmediately




Creating A Do Nothing Thread

o Thefollowing code createsa Thr ead object,
then starts a second thread.

publicsta ticvoid m ain( Strin g[] args) {
Threadt =new Thr ead();
t.start(); /Inow twothrea ds, bothr unning

System.o ut.printin ( “mainco ntinues”)

}
e In code above:
— First linecreatesa Thr ead object, but main isthe
only running thread
— Seoond line spawnsa new VM thread. Two threads
arenow active.

— main thread continues at same time as new thread
callsitsr un method (which does nothing) 9

Getting Thread to Do Something

o Option #1. extend Thre ad class, overrider un
method

clas s ThreadEx t ends exte nds Thread {
public void run() {
for(inti =0;i< 1000; i++ )
System.o ut.printin ( "ThreadE xtends" + i);
}
}

clas s ThreadDe np {

public stati ¢ void mai n( String[ ] args){
Threadtl = new Thre adExtends();
t 1.start( )
for(inti =0;i< 1000; i++ )

System.o ut.println ( "main " +i);

10




Alternative to Extending Thread

o No multipleinheritance might not have an
extends clause available
o Might not model an | S-A relationship
o Really just need to explain to Threa d what
ru n method to use
— Obviousfunction object pattern
— run isencapsulated in standard Runnableinterface

— implement Runnable; send an instanceto Thread
constructor

— preferred solution

11

Alternative #2: Using Runnabl e

clas s ThreadsR unMethodi nplements Runnable {
public void run() {
for(inti =0;i< 1000; i++ )
System.o ut.printin ( "Threads RunMethod " +i);
}
}

clas s ThreadDe np {
public st  atic void main( Stri ng[] args ) {
Threadt2  =new Thr ead (new ThreadsRun Method() )
t2.start( );
for(int i =0ji< 1000; i++ )
System. out.printl n("main "o+

12




Anonymous Implementation

e« May seethe Runnabl e implemented asan
anonymous classin other people's code

clas s ThreadDe no {
public st  atic void main( Stri ng[] args ) {
()

Threadt3 =new Thr ead (new Runnable {
publi ¢ voidrun ( ){
for( inti=0; i <1000; i++)
Syst em.out.pr intin("Th  readAnonymous " +i );
}
}
)
t3.start( );
for(int i =0ji< 1000; i++ )
System. out.printl n("main "o+

13

Common Mistake #1

e You should NEVER call run_yoursdf

— will not create new VM thread
— will not get separate stack space
— will invoker un in the arr ent thread

e St art don't run

14




Thread States

e Thread isnot runnable until start iscalled

e Thread can only unblock if cause of blockingis
resolved

slee p, wait, blocked on I/©

run terminates

/

cons t ructor 15

blocked

time expires, notif yAll , /O complete

Is The Thread Alive?

o Cannot differentiate between being runnable
and blocked.

e Thread that isrunnable or blocked isalive

e Thread that hasnot started or isdead is not
alive

e Can useThr ead instance method isA | ive to
determinethread status

16




Uncaught Exceptions

o Uncaught exception terminatesathread’srun

method

e Doesnot terminatethe VM unlessthere are

only daemon threads | eft

e ru n cannot list any checked exceptionsin its

throwslist (why not?)

17

Thread Methods

e instance methods
— setDaemon
— isDaemon
— setPriority
— getPriority
— interrupt
— join
e static methods
— dee
— yield

18




Current Thread

o Beforeyou can invoke any Threa d instance
method, you need a referencetothe current
thread

— If you extend Thread , no problem. In your run
method, this representscurrent Thre ad and can
be omitted

— If you use Runnabl e, in your r un method t his
representsthe Runnable objed. Need to use static
method Thread.c urrentThr ead

Thre ad self = Thread.cu rrentThre ad();

19

Deamon Threads

By themselvesdo not keep aVM alive

Can mark athread as a daemon thread by
calling set Daemon(tru e)

Call must bebefore all to st art ; after call an
exception isthrown

Without call to set Daenon thread’s daemon
statusis sasmeasthread that spawned it

Can call i sDaenon to seeif thread isa
daemon

20

1



Thread Priorities

o Can suggest to VM that when thereis
contention for CPU, somethreads should get
preference over others.

— Only considered when ther e s CPU contention;
threadsthat are eging won't go any faster with
higher priorities

— If your program dependson priorities, you need to
do morework; VM could ignore suggestions

— Priority of thread is ssmeasthread that created it

— Only 10prioritiesranging from
Thre ad.MIN_PR 1 ORITY to
Thre ad.MAX_PRI ORITY, with
Thre ad.NORM_FRIORITY ”

Current Implementations

e Windows98/NT and SolarisNative Threads:
— schedule highest priority thread

— scheduling isfully preemptive: if a new highest
priority thread becomesrunnable, it gets sheduled

— rule of thumb: at any given time, highest-priority
thread isrunning. But thisis not guaranteed hy
language spec.

— Javaplatform does not time-slice underlying thread
platform does (Solaris Green Threads does not), so
if several highest priority threads, system generally
does smple, non-preemptive round-robin

22




Interrupting A Thread

o Any thread can interrupt any other thread (if it
has areferencetoits Thr ead objed) by
invokingin t erru pt onthat Threa d object.
— Used if target thread is deliberately blocked

(deeping, waiting, yielding o otherwise not
interested in getting the processor right now, but not
blocked on 1/0)

— If target thread is deliberately blocked, interrupt
sendsan | nterrupt  edExcepti on tothethread,

which wakes thread up
— If target thread is no longer deliber ately blocked,
interrupt isignored

23

Inter rupted Exception

e Interru pted Exception isachecked

exception; must be caught or propagated by
host of Thre ad routinesthat causethread to

give up the processor
— Really annoying
— Probably should terminate thread

24




join
e Thecalltl . join ( ) causesthecurrent
thread to block until t1 terminates
e Havetocatch Int errup tedException

e ma n canjoin on all threadsit spawnsto wait
for them all to finish

25

yield

Threadsthat are CPU intensive an hog dl the
cycles, especially if they are high priority
Polite thread yields every now and then

— not too dten; could be spending too much time
context switching

— yiel disastatic method.

Curr ent thread

— Gives up the processor if another thread of at least
as high priority iswaiting for the CPU

— If nodigiblethread, current thread retains
processor

Must catch Int errup tedExcept i on 2




sleep

e Static method.

e Current thread
— Givesup the processor for at least the time specified
— Timeisin milliseconds
— No guarantee that you get processor back

e Must catch Int errup tedException

27

Timeouts

e Caninvokewai t andjo i nwith a parameter
that limitsthe amount of blocking (in
milliseconds)

— for wait not neassarily a geat idea

o Example: thread needsto do 1/O; what if
nothing istyped?

— Dol/O in aseparatethread

— main thread doesajoin , with timeout on the /O
thread

— If no /O, main thread will continue and can
terminateitself and I/O thread if needed

28




Shared Data

¢ All threads sharethe VM s memory
— useful if threads are going to do real work

o |f two threads have referencesto the same
objed, they can potentially ssmultaneously
invoke methods on the obj ect

— ok if both accessng
— might be bad if onethread is mutating
— could be a disaster if two threads are mutating

29

Example
clas s TwoObjs {
pri vate int a =15;
pri vate int b =37,
publicints um() { returna+ b;} /s hould alwa. ys be 52
public void swap() { inttmp= a;a=b; b =tmp;}

}
e Twothreads hareareferenceto some
TwoObjs object, and the foll owing steps occur

— Thread 1 invokesswap, and immediately after
executing a=b istime-dliced out.

— Thread 2 invokes sum, and returns 74.

o Despite private data, and object hasbeen
accessed whilein an inconsistent state

30

1



Two Mutators Do Serious Damage

e Last example not so bad
— Wetemporarily seeobject in a bad state

— Thread 1 getstime-dliced in and object gets back in
goad state
— Often weview objectsin bad states, and we know
that current information may beinaccurate, but will
eventually be corr ect
« bank accounts
« frequent flyer accounts
« credit card statements

« When two mutatorsinteract, can irreversibly
damage object state

31

Two mutators

clas s TwoObjs {
pr i vate int a =15;
pr i vate int b =37,

publicint s um() { return a +b;}/ / should alwaysbe 52
public void swap() { int tmp = aa=b ; b=tmp ; }
}

e Starting from good state

— Thread 1 invokes swap, and immediately after
executing tmp=a istime-siced out. In thisthread
tmp=15.

— Thread 2 invokes swap, swapping a and b. a isnow
37,bisnow 15.

— Thread 1listime-sliced back in and continues: a is
now 15,b isnow tmp, sob is15. OOPS!

32

1



Can This Really Happen?

e YeEs bUt,
— It can befairly rare
— Depends on sped of processors
— Depends on number of processors
— Dependson thread priorities
— Dependson luck of thedraw

e Worst kind of bug
— Two(bjs classisnot thread-safe

— Could do millions of operations and never see a
problem

— Hard to know you’' ve messed up

33

How Java Solves The Problem

e Usethesynchron i zed keyword

e Marking an instance method as synchronized
meansthat in order to invokeit thethread
must gain possesson of the “monitor” for the
invoking adbject (i.e. the “monitor” for thi s).

e Themonitor isan abstraction
— every objed hasoneand only one
— no getMonitor method, however

34




How It Works

Toenter a synchronized method, thread must

— ether already own the monitor (perhapsthis
method is being called from another synchronized
method)

— get the monitor

— oncein, if you aretimesliced out, you will keep the
monitor, blocking ather threads out

If another thread already owns the monitor

and has been timesliced out, you will be

blocked from obtaining the monitor

When thread leaves method from which it
obtained monitor, monitor isreleased by VM

Unsynchronized Methods

Only synchronized methodsrequirethe
obtaining o a monitor

Synchronization isvery expensive

Sunrecommends:

— synchronize everything
Lessdrastic:

— synchronize mutators

— synchronize accesor s depending on the tradeoff of
occasional bad data ver sus performance

36

L



Example #1

e Assume both print and swap are synchronized
— Thread #1doesobj.swap( )
« can obtain obj 'smonitor and enter
— Thread #1istimesliced out in the middle of swap
« Thread #1 holds on to obj 'smonitor
— Thread #2 does obj.print( )

« Thread #2 needsobj 'smonitor. Can't get it, so thread is
blocked

— Thread #listimedliced in; finishes avap
« Thread #1 releases obj s monitor

— Thread #3 does obj.print( )
« Thread #3 getsthe monitor and proceeals

37

Example #2

e Assumeonly swap is synchronized
— Thread #1doesobj.swap( )
« can obtain obj 'smonitor and enter
— Thread #1istimesliced out in the middle of swap
« Thread #1 holds on to obj 'smonitor
— Thread #2 does obj.print( )
« Thread #2 doesnot need obj 'smonitor, so it proceals
— Thread #listimedliced in; finishes avap
« Thread #1 releases obj s monitor

38

1!



Example #3

e Assume swap is synchronized, and obj 1 and
obj 2 aredifferent objects
— Thread #1 does objl.swap()
« can obtain obj1 'smonitor and enter

— Thread #1istimedliced out in the middle of swap
« Thread #1 holds on to obj1 'smonitor
— Thread #2doesobj2.print ()
« can obtain obj2 'smonitor and enter, so it proceals
« When it finishesit releases obj2 'smonitor
— Thread #listimedliced in; finishes avap
« Thread #1 releases obj1 'smonitor

39

Static Methods

e Synchronized static methodsrequirethe
obtaining o a monitor also
— can’t betheobjects monitor because thereis not

— the monitor it needsto dbtain the monitor for the
Clas s objed.

o May beimportant for fancy stuff

¢ Just remember that instance methods and
static methods use different monitors

40

2



Synchronized Block

o Often don’'t neda to synchronize entire method

— just need to synchronize a “critical sedion”
— few lines of codethat should be viewed as an
“atomic” single operation

o Usea synchronized block
sy nchro nize d(an yobje ct)

{

/I must have posse ssion of nmonit orfo r anyobje ct

Il will relea seif obta ined (notjustinh erite d)

41

These are Equivalent

publ i cclassF oo // Ver sion #1

{

sy nchronized public voi d foo() { ..}
sy nchronized static voi d bar() { ..}

}

publ i cclassF oo // Ver sion #2

{
public void f oo()

{
synchroniz  ed( this) {..}

}
st atic void bar()
{
synchroniz ed(Foo.cl ass){.. .}
}

}

42




Synchronized Is Not Inherited

e Asprevious dide shows, synchronized in
method header isjust a convenience

43

Synchronization Rule #1

o Can only synchronize methods and code
o Can never synchronize data, so

o RULE #1: ALL DATA MUST BE PRIVATE
OR YOU LOSE

44




Synchronization Rule #2

e RULE #2: Any code/methods that makes

changesto shared variables must use
sy nchro nize d to ensure safe concurrent

access.,

e Accessorsare often decided based on
performance requirements.

45

Synchronization Rule #3

o RULE #3: Becareful about propagating
exceptionsthrough a critical section.
— Can have a half-way done operation if you do this
— Thisiswhy st op isdeprecated

46




Synchronization Rule #4

e Rule#4: Never call slee pin asynchronized
block.

— If you call sleep , you give up the procesor, but not
the monitor.

— Anybody else who neads the monitor will be blocked
— Can cause deadlock
— Thisiswhy suspend isdeprecated

47

How to Wait For Conditions

e If you arein asynchronized block and need to
stall for an external event

— usemon.wait() , wheremonisthe monitor that
you own.

e Wait
— gives up the processor
— gives up the monitor

— makesyou ineligibleto ever be rescheduled unless
either a timeout expires, an interrupt occurs, or
somebody elseissiesanotif  yAll

48




notify vs notifyAll

Oncethread has done a wait, another thread
theredifiessituation should issue a
man.not i fyA | 1()

ma.not i fyA | | reinstates scheduling
eligibility for all threadsthat isaied a
man.wai t ()

man.not i fy reinstates scheduling eligibility

for onethread (VM chooses, not you) that
issued amon wait ()

— extremely dangerousto use notify  unlessyou
know thereisonly onethread waiting. This method
should be deprecated

49

wait and notifyAl |

Y ou must own the monitor when you execute
either of these

Runtime exception thrown if you don’t own
monitor

Common mistakeisto usewait( ) or

not ifyA 11() without specifying monitor.
Defaultstot his.w ait( ) and

this.no tify Al() ,whichonlyworksifthe
monitor isth i s.

Typically, wait isin a very tight whileloop,
NOT an if statement

50




Synchronization Rule #5

Thewait /notify All pattern:

— Placewait in atight whileloop that loopsaslong as
arequired condition isnot yet met

— Codethat could fix the condition issues notif . yAll

— Never use notify

— remember that these are instancemethods for the
monitor that you arewilling to release

51

Deadlock

Occurswhen two threads are each waiting for
monitorsthey can’t both get.

Example:

— Thread #1 needsmonitors A and B
— Thread #2 needs monitors A and B
— Thread #1 has A

— Thread #2hasB

— Deadlock

Java does not detect deadlocks

Avoiding deadlocks very difficult; requireslots
of experience

52

20



Sun’s Deadlock Avoidance Trick

o Usean internal private object to synchronize:

clas s Account {
public void deposit( intd){
synchroniz  ed( CRITI CAL_SECTION_1){
balance +=d;
}
}
public void withdraw( int d) throws Ove rdraftExc eption {
synchroniz ed( CRITI CAL_SECTION_1){
if( bala nce>=d )
balanc e -=d;
else
throw new Overd r aftExcep tion(™ + d);
}
}

pr i vate int balance = 0;
pri vate Obje ctCRITIC AL_SECTION 1=new nject()
}

53

Synchronization Rule #6

o Rule#6: Always obtain monitorsin the same
order
— Often involves finding an immutable totall y-
orderable property of the object’s whose monitor
you will need, and obtaining monitor s using that
order
— Example: obtaining monitorsfor two bank

accounts, use account #s, and obtain lower account
# smonitor first

54




Summary

e Threadingisan essential part of Java and any
real program. Easier in Java than elsewhere
— tellsyou how hard it is elsewhere

o Follow the rules
— start don’t run
— don'’t rely exclusively on priorities
— no public data
— synchronize mutator s, maybe accessors
— leave «aritical section only after objed isrestored
— no sleeping in synchronized block
— usewait /notify Al pattern
— obtain monitorsin same order 55

2



