#ifndef BINOMIAL_QUEUE_H #define BINOMIAL_QUEUE_H #include #include #include "dsexceptions.h" using namespace std; // Binomial queue class // // CONSTRUCTION: with no parameters // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // deleteMin( ) --> Return and remove smallest item // Comparable findMin( ) --> Return smallest item // bool isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // void merge( rhs ) --> Absorb rhs into this heap // ******************ERRORS******************************** // Throws UnderflowException as warranted template class BinomialQueue { public: BinomialQueue( ) : theTrees( DEFAULT_TREES ) { for( int i = 0; i < theTrees.size( ); i++ ) theTrees[ i ] = NULL; currentSize = 0; } BinomialQueue( const Comparable & item ) : theTrees( 1 ), currentSize( 1 ) { theTrees[ 0 ] = new BinomialNode( item, NULL, NULL ); } BinomialQueue( const BinomialQueue & rhs ) : currentSize( 0 ) { *this = rhs; } ~BinomialQueue( ) { makeEmpty( ); } /** * Return true if empty; false otherwise. */ bool isEmpty( ) const { return currentSize == 0; } /** * Returns minimum item. * Throws UnderflowException if empty. */ const Comparable & findMin( ) const { if( isEmpty( ) ) throw UnderflowException( ); return theTrees[ findMinIndex( ) ]->element; } /** * Insert item x into the priority queue; allows duplicates. */ void insert( const Comparable & x ) { BinomialQueue tmp( x ); merge( tmp ); } /** * Remove the smallest item from the priority queue. * Throws UnderflowException if empty. */ void deleteMin( ) { Comparable x; deleteMin( x ); } /** * Remove the minimum item and place it in minItem. * Throws UnderflowException if empty. */ void deleteMin( Comparable & minItem ) { if( isEmpty( ) ) throw UnderflowException( ); int minIndex = findMinIndex( ); minItem = theTrees[ minIndex ]->element; BinomialNode *oldRoot = theTrees[ minIndex ]; BinomialNode *deletedTree = oldRoot->leftChild; delete oldRoot; // Construct H'' BinomialQueue deletedQueue; deletedQueue.theTrees.resize( minIndex ); deletedQueue.currentSize = ( 1 << minIndex ) - 1; for( int j = minIndex - 1; j >= 0; j-- ) { deletedQueue.theTrees[ j ] = deletedTree; deletedTree = deletedTree->nextSibling; deletedQueue.theTrees[ j ]->nextSibling = NULL; } // Construct H' theTrees[ minIndex ] = NULL; currentSize -= deletedQueue.currentSize + 1; merge( deletedQueue ); } /** * Make the priority queue logically empty. */ void makeEmpty( ) { currentSize = 0; for( int i = 0; i < theTrees.size( ); i++ ) makeEmpty( theTrees[ i ] ); } /** * Merge rhs into the priority queue. * rhs becomes empty. rhs must be different from this. * Exercise 6.35 needed to make this operation more efficient. */ void merge( BinomialQueue & rhs ) { if( this == &rhs ) // Avoid aliasing problems return; currentSize += rhs.currentSize; if( currentSize > capacity( ) ) { int oldNumTrees = theTrees.size( ); int newNumTrees = max( theTrees.size( ), rhs.theTrees.size( ) ) + 1; theTrees.resize( newNumTrees ); for( int i = oldNumTrees; i < newNumTrees; i++ ) theTrees[ i ] = NULL; } BinomialNode *carry = NULL; for( int i = 0, j = 1; j <= currentSize; i++, j *= 2 ) { BinomialNode *t1 = theTrees[ i ]; BinomialNode *t2 = i < rhs.theTrees.size( ) ? rhs.theTrees[ i ] : NULL; int whichCase = t1 == NULL ? 0 : 1; whichCase += t2 == NULL ? 0 : 2; whichCase += carry == NULL ? 0 : 4; switch( whichCase ) { case 0: /* No trees */ case 1: /* Only this */ break; case 2: /* Only rhs */ theTrees[ i ] = t2; rhs.theTrees[ i ] = NULL; break; case 4: /* Only carry */ theTrees[ i ] = carry; carry = NULL; break; case 3: /* this and rhs */ carry = combineTrees( t1, t2 ); theTrees[ i ] = rhs.theTrees[ i ] = NULL; break; case 5: /* this and carry */ carry = combineTrees( t1, carry ); theTrees[ i ] = NULL; break; case 6: /* rhs and carry */ carry = combineTrees( t2, carry ); rhs.theTrees[ i ] = NULL; break; case 7: /* All three */ theTrees[ i ] = carry; carry = combineTrees( t1, t2 ); rhs.theTrees[ i ] = NULL; break; } } for( int k = 0; k < rhs.theTrees.size( ); k++ ) rhs.theTrees[ k ] = NULL; rhs.currentSize = 0; } const BinomialQueue & operator= ( const BinomialQueue & rhs ) { if( this != &rhs ) { makeEmpty( ); theTrees.resize( rhs.theTrees.size( ) ); // Just in case for( int i = 0; i < rhs.theTrees.size( ); i++ ) theTrees[ i ] = clone( rhs.theTrees[ i ] ); currentSize = rhs.currentSize; } return *this; } private: struct BinomialNode { Comparable element; BinomialNode *leftChild; BinomialNode *nextSibling; BinomialNode( const Comparable & theElement, BinomialNode *lt, BinomialNode *rt ) : element( theElement ), leftChild( lt ), nextSibling( rt ) { } }; enum { DEFAULT_TREES = 1 }; int currentSize; // Number of items in the priority queue vector theTrees; // An array of tree roots /** * Find index of tree containing the smallest item in the priority queue. * The priority queue must not be empty. * Return the index of tree containing the smallest item. */ int findMinIndex( ) const { int i; int minIndex; for( i = 0; theTrees[ i ] == NULL; i++ ) ; for( minIndex = i; i < theTrees.size( ); i++ ) if( theTrees[ i ] != NULL && theTrees[ i ]->element < theTrees[ minIndex ]->element ) minIndex = i; return minIndex; } /** * Return the capacity. */ int capacity( ) const { return ( 1 << theTrees.size( ) ) - 1; } /** * Return the result of merging equal-sized t1 and t2. */ BinomialNode * combineTrees( BinomialNode *t1, BinomialNode *t2 ) { if( t2->element < t1->element ) return combineTrees( t2, t1 ); t2->nextSibling = t1->leftChild; t1->leftChild = t2; return t1; } /** * Make a binomial tree logically empty, and free memory. */ void makeEmpty( BinomialNode * & t ) { if( t != NULL ) { makeEmpty( t->leftChild ); makeEmpty( t->nextSibling ); delete t; t = NULL; } } /** * Internal method to clone subtree. */ BinomialNode * clone( BinomialNode * t ) const { if( t == NULL ) return NULL; else return new BinomialNode( t->element, clone( t->leftChild ), clone( t->nextSibling ) ); } }; #endif