// BinomialQueue class // // CONSTRUCTION: with no parameters or a single item // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // Comparable deleteMin( )--> Return and remove smallest item // Comparable findMin( ) --> Return smallest item // boolean isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // vod merge( rhs ) --> Absord rhs into this heap // ******************ERRORS******************************** // Throws UnderflowException as appropriate /** * Implements a binomial queue. * Note that all "matching" is based on the compareTo method. * @author Mark Allen Weiss */ public class BinomialQueue> { /** * Construct the binomial queue. */ @SuppressWarnings("unchecked") public BinomialQueue( ) { theTrees = new BinomialNode[ DEFAULT_TREES ]; makeEmpty( ); } /** * Construct with a single item. */ @SuppressWarnings("unchecked") public BinomialQueue( AnyType item ) { currentSize = 1; theTrees = new BinomialNode[ 1 ]; theTrees[ 0 ] = new BinomialNode( item, null, null ); } @SuppressWarnings("unchecked") private void expandTheTrees( int newNumTrees ) { BinomialNode [ ] old = theTrees; int oldNumTrees = theTrees.length; theTrees = new BinomialNode[ newNumTrees ]; for( int i = 0; i < oldNumTrees; i++ ) theTrees[ i ] = old[ i ]; for( int i = oldNumTrees; i < newNumTrees; i++ ) theTrees[ i ] = null; } /** * Merge rhs into the priority queue. * rhs becomes empty. rhs must be different from this. * @param rhs the other binomial queue. */ public void merge( BinomialQueue rhs ) { if( this == rhs ) // Avoid aliasing problems return; currentSize += rhs.currentSize; if( currentSize > capacity( ) ) { int newNumTrees = Math.max( theTrees.length, rhs.theTrees.length ) + 1; expandTheTrees( newNumTrees ); } BinomialNode carry = null; for( int i = 0, j = 1; j <= currentSize; i++, j *= 2 ) { BinomialNode t1 = theTrees[ i ]; BinomialNode t2 = i < rhs.theTrees.length ? rhs.theTrees[ i ] : null; int whichCase = t1 == null ? 0 : 1; whichCase += t2 == null ? 0 : 2; whichCase += carry == null ? 0 : 4; switch( whichCase ) { case 0: /* No trees */ case 1: /* Only this */ break; case 2: /* Only rhs */ theTrees[ i ] = t2; rhs.theTrees[ i ] = null; break; case 4: /* Only carry */ theTrees[ i ] = carry; carry = null; break; case 3: /* this and rhs */ carry = combineTrees( t1, t2 ); theTrees[ i ] = rhs.theTrees[ i ] = null; break; case 5: /* this and carry */ carry = combineTrees( t1, carry ); theTrees[ i ] = null; break; case 6: /* rhs and carry */ carry = combineTrees( t2, carry ); rhs.theTrees[ i ] = null; break; case 7: /* All three */ theTrees[ i ] = carry; carry = combineTrees( t1, t2 ); rhs.theTrees[ i ] = null; break; } } for( int k = 0; k < rhs.theTrees.length; k++ ) rhs.theTrees[ k ] = null; rhs.currentSize = 0; } /** * Return the result of merging equal-sized t1 and t2. */ private BinomialNode combineTrees( BinomialNode t1, BinomialNode t2 ) { if( t1.element.compareTo( t2.element ) > 0 ) return combineTrees( t2, t1 ); t2.nextSibling = t1.leftChild; t1.leftChild = t2; return t1; } /** * Insert into the priority queue, maintaining heap order. * This implementation is not optimized for O(1) performance. * @param x the item to insert. */ public void insert( AnyType x ) { merge( new BinomialQueue( x ) ); } /** * Find the smallest item in the priority queue. * @return the smallest item, or null, if empty. */ public AnyType findMin( ) { if( isEmpty( ) ) throw new UnderflowException( ); return theTrees[ findMinIndex( ) ].element; } /** * Find index of tree containing the smallest item in the priority queue. * The priority queue must not be empty. * @return the index of tree containing the smallest item. */ private int findMinIndex( ) { int i; int minIndex; for( i = 0; theTrees[ i ] == null; i++ ) ; for( minIndex = i; i < theTrees.length; i++ ) if( theTrees[ i ] != null && theTrees[ i ].element.compareTo( theTrees[ minIndex ].element ) < 0 ) minIndex = i; return minIndex; } /** * Remove the smallest item from the priority queue. * @return the smallest item, or null, if empty. */ public AnyType deleteMin( ) { if( isEmpty( ) ) throw new UnderflowException( ); int minIndex = findMinIndex( ); AnyType minItem = theTrees[ minIndex ].element; BinomialNode deletedTree = theTrees[ minIndex ].leftChild; // Construct H'' BinomialQueue deletedQueue = new BinomialQueue( ); deletedQueue.expandTheTrees( minIndex + 1 ); deletedQueue.currentSize = ( 1 << minIndex ) - 1; for( int j = minIndex - 1; j >= 0; j-- ) { deletedQueue.theTrees[ j ] = deletedTree; deletedTree = deletedTree.nextSibling; deletedQueue.theTrees[ j ].nextSibling = null; } // Construct H' theTrees[ minIndex ] = null; currentSize -= deletedQueue.currentSize + 1; merge( deletedQueue ); return minItem; } /** * Test if the priority queue is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return currentSize == 0; } /** * Make the priority queue logically empty. */ public void makeEmpty( ) { currentSize = 0; for( int i = 0; i < theTrees.length; i++ ) theTrees[ i ] = null; } private static class BinomialNode { // Constructors BinomialNode( AnyType theElement ) { this( theElement, null, null ); } BinomialNode( AnyType theElement, BinomialNode lt, BinomialNode nt ) { element = theElement; leftChild = lt; nextSibling = nt; } AnyType element; // The data in the node BinomialNode leftChild; // Left child BinomialNode nextSibling; // Right child } private static final int DEFAULT_TREES = 1; private int currentSize; // # items in priority queue private BinomialNode [ ] theTrees; // An array of tree roots /** * Return the capacity. */ private int capacity( ) { return ( 1 << theTrees.length ) - 1; } public static void main( String [ ] args ) { int numItems = 10000; BinomialQueue h = new BinomialQueue( ); BinomialQueue h1 = new BinomialQueue( ); int i = 37; System.out.println( "Starting check." ); for( i = 37; i != 0; i = ( i + 37 ) % numItems ) if( i % 2 == 0 ) h1.insert( i ); else h.insert( i ); h.merge( h1 ); for( i = 1; i < numItems; i++ ) if( h.deleteMin( ) != i ) System.out.println( "Oops! " + i ); System.out.println( "Check done." ); } }