/** * A class that contains several sorting routines, * implemented as static methods. * Arrays are rearranged with smallest item first, * using compareTo. * @author Mark Allen Weiss */ public final class Sort { /** * Simple insertion sort. * @param a an array of Comparable items. */ public static > void insertionSort( AnyType [ ] a ) { int j; for( int p = 1; p < a.length; p++ ) { AnyType tmp = a[ p ]; for( j = p; j > 0 && tmp.compareTo( a[ j - 1 ] ) < 0; j-- ) a[ j ] = a[ j - 1 ]; a[ j ] = tmp; } } /** * Shellsort, using Shell's (poor) increments. * @param a an array of Comparable items. */ public static > void shellsort( AnyType [ ] a ) { int j; for( int gap = a.length / 2; gap > 0; gap /= 2 ) for( int i = gap; i < a.length; i++ ) { AnyType tmp = a[ i ]; for( j = i; j >= gap && tmp.compareTo( a[ j - gap ] ) < 0; j -= gap ) a[ j ] = a[ j - gap ]; a[ j ] = tmp; } } /** * Standard heapsort. * @param a an array of Comparable items. */ public static > void heapsort( AnyType [ ] a ) { for( int i = a.length / 2; i >= 0; i-- ) /* buildHeap */ percDown( a, i, a.length ); for( int i = a.length - 1; i > 0; i-- ) { swapReferences( a, 0, i ); /* deleteMax */ percDown( a, 0, i ); } } /** * Internal method for heapsort. * @param i the index of an item in the heap. * @return the index of the left child. */ private static int leftChild( int i ) { return 2 * i + 1; } /** * Internal method for heapsort that is used in * deleteMax and buildHeap. * @param a an array of Comparable items. * @int i the position from which to percolate down. * @int n the logical size of the binary heap. */ private static > void percDown( AnyType [ ] a, int i, int n ) { int child; AnyType tmp; for( tmp = a[ i ]; leftChild( i ) < n; i = child ) { child = leftChild( i ); if( child != n - 1 && a[ child ].compareTo( a[ child + 1 ] ) < 0 ) child++; if( tmp.compareTo( a[ child ] ) < 0 ) a[ i ] = a[ child ]; else break; } a[ i ] = tmp; } /** * Mergesort algorithm. * @param a an array of Comparable items. */ @SuppressWarnings("unchecked") public static > void mergeSort( AnyType [ ] a ) { AnyType [ ] tmpArray = (AnyType[]) new Comparable[ a.length ]; mergeSort( a, tmpArray, 0, a.length - 1 ); } /** * Internal method that makes recursive calls. * @param a an array of Comparable items. * @param tmpArray an array to place the merged result. * @param left the left-most index of the subarray. * @param right the right-most index of the subarray. */ private static > void mergeSort( AnyType [ ] a, AnyType [ ] tmpArray, int left, int right ) { if( left < right ) { int center = ( left + right ) / 2; mergeSort( a, tmpArray, left, center ); mergeSort( a, tmpArray, center + 1, right ); merge( a, tmpArray, left, center + 1, right ); } } /** * Internal method that merges two sorted halves of a subarray. * @param a an array of Comparable items. * @param tmpArray an array to place the merged result. * @param leftPos the left-most index of the subarray. * @param rightPos the index of the start of the second half. * @param rightEnd the right-most index of the subarray. */ private static > void merge( AnyType [ ] a, AnyType [ ] tmpArray, int leftPos, int rightPos, int rightEnd ) { int leftEnd = rightPos - 1; int tmpPos = leftPos; int numElements = rightEnd - leftPos + 1; // Main loop while( leftPos <= leftEnd && rightPos <= rightEnd ) if( a[ leftPos ].compareTo( a[ rightPos ] ) <= 0 ) tmpArray[ tmpPos++ ] = a[ leftPos++ ]; else tmpArray[ tmpPos++ ] = a[ rightPos++ ]; while( leftPos <= leftEnd ) // Copy rest of first half tmpArray[ tmpPos++ ] = a[ leftPos++ ]; while( rightPos <= rightEnd ) // Copy rest of right half tmpArray[ tmpPos++ ] = a[ rightPos++ ]; // Copy tmpArray back for( int i = 0; i < numElements; i++, rightEnd-- ) a[ rightEnd ] = tmpArray[ rightEnd ]; } /** * Quicksort algorithm. * @param a an array of Comparable items. */ public static > void quicksort( AnyType [ ] a ) { quicksort( a, 0, a.length - 1 ); } private static final int CUTOFF = 3; /** * Method to swap to elements in an array. * @param a an array of objects. * @param index1 the index of the first object. * @param index2 the index of the second object. */ public static void swapReferences( AnyType [ ] a, int index1, int index2 ) { AnyType tmp = a[ index1 ]; a[ index1 ] = a[ index2 ]; a[ index2 ] = tmp; } /** * Return median of left, center, and right. * Order these and hide the pivot. */ private static > AnyType median3( AnyType [ ] a, int left, int right ) { int center = ( left + right ) / 2; if( a[ center ].compareTo( a[ left ] ) < 0 ) swapReferences( a, left, center ); if( a[ right ].compareTo( a[ left ] ) < 0 ) swapReferences( a, left, right ); if( a[ right ].compareTo( a[ center ] ) < 0 ) swapReferences( a, center, right ); // Place pivot at position right - 1 swapReferences( a, center, right - 1 ); return a[ right - 1 ]; } /** * Internal quicksort method that makes recursive calls. * Uses median-of-three partitioning and a cutoff of 10. * @param a an array of Comparable items. * @param left the left-most index of the subarray. * @param right the right-most index of the subarray. */ private static > void quicksort( AnyType [ ] a, int left, int right ) { if( left + CUTOFF <= right ) { AnyType pivot = median3( a, left, right ); // Begin partitioning int i = left, j = right - 1; for( ; ; ) { while( a[ ++i ].compareTo( pivot ) < 0 ) { } while( a[ --j ].compareTo( pivot ) > 0 ) { } if( i < j ) swapReferences( a, i, j ); else break; } swapReferences( a, i, right - 1 ); // Restore pivot quicksort( a, left, i - 1 ); // Sort small elements quicksort( a, i + 1, right ); // Sort large elements } else // Do an insertion sort on the subarray insertionSort( a, left, right ); } /** * Internal insertion sort routine for subarrays * that is used by quicksort. * @param a an array of Comparable items. * @param left the left-most index of the subarray. * @param right the right-most index of the subarray. */ private static > void insertionSort( AnyType [ ] a, int left, int right ) { for( int p = left + 1; p <= right; p++ ) { AnyType tmp = a[ p ]; int j; for( j = p; j > left && tmp.compareTo( a[ j - 1 ] ) < 0; j-- ) a[ j ] = a[ j - 1 ]; a[ j ] = tmp; } } /** * Quick selection algorithm. * Places the kth smallest item in a[k-1]. * @param a an array of Comparable items. * @param k the desired rank (1 is minimum) in the entire array. */ public static > void quickSelect( AnyType [ ] a, int k ) { quickSelect( a, 0, a.length - 1, k ); } /** * Internal selection method that makes recursive calls. * Uses median-of-three partitioning and a cutoff of 10. * Places the kth smallest item in a[k-1]. * @param a an array of Comparable items. * @param left the left-most index of the subarray. * @param right the right-most index of the subarray. * @param k the desired index (1 is minimum) in the entire array. */ private static > void quickSelect( AnyType [ ] a, int left, int right, int k ) { if( left + CUTOFF <= right ) { AnyType pivot = median3( a, left, right ); // Begin partitioning int i = left, j = right - 1; for( ; ; ) { while( a[ ++i ].compareTo( pivot ) < 0 ) { } while( a[ --j ].compareTo( pivot ) > 0 ) { } if( i < j ) swapReferences( a, i, j ); else break; } swapReferences( a, i, right - 1 ); // Restore pivot if( k <= i ) quickSelect( a, left, i - 1, k ); else if( k > i + 1 ) quickSelect( a, i + 1, right, k ); } else // Do an insertion sort on the subarray insertionSort( a, left, right ); } private static final int NUM_ITEMS = 1000; private static int theSeed = 1; private static void checkSort( Integer [ ] a ) { for( int i = 0; i < a.length; i++ ) if( a[ i ] != i ) System.out.println( "Error at " + i ); System.out.println( "Finished checksort" ); } public static void main( String [ ] args ) { Integer [ ] a = new Integer[ NUM_ITEMS ]; for( int i = 0; i < a.length; i++ ) a[ i ] = i; for( theSeed = 0; theSeed < 20; theSeed++ ) { Random.permute( a ); Sort.insertionSort( a ); checkSort( a ); Random.permute( a ); Sort.heapsort( a ); checkSort( a ); Random.permute( a ); Sort.shellsort( a ); checkSort( a ); Random.permute( a ); Sort.mergeSort( a ); checkSort( a ); Random.permute( a ); Sort.quicksort( a ); checkSort( a ); Random.permute( a ); Sort.quickSelect( a, NUM_ITEMS / 2 ); System.out.println( a[ NUM_ITEMS / 2 - 1 ] + " " + NUM_ITEMS / 2 ); } } }