
List of Transparencies

Chapter 1 Primitive Java    1

A simple first program   2
The eight primitve types in Java   3
Program that illustrates operators   4
Result of logical operators   5
Examples of conditional and looping constructs   6
Layout of a switch  statement   7
Illustration of method declaration and calls   8

Chapter 2 References    9

An illustration of a reference: The Point  object stored at memory location 1000 is refer-
enced by both point1  and point3 . The Point  object stored at memory location 
1024 is referenced by point2 . The memory locations where the variables are 
stored are arbitrary   10

The result of point3=point2 : point3  now references the same object as point2    11
Simple demonstration of arrays   12
Array expansion: (a) starting point: a references 10 integers; (b) after step 1: original  

references the 10 integers; (c) after steps 2 and 3: a references 12 integers, the first 
10 of which are copied from original ; (d) after original  exits scope, the orig-
inal array is unreferenced and can be reclaimed   13

Common standard run-time exceptions   14
Common standard checked exceptions   15
Simple program to illustrate exceptions   16
Illustration of the throws  clause   17
Program that demonstrates the string tokenizer   18
Program to list contents of a file   19

Chapter 3 Objects and Classes    20



Copyright 1998 by Addison-Wesley Publishing Company ii

A complete declaration of an IntCell  class   21
IntCell  members: read  and write  are accessible, but storedValue  is hidden   22
A simple test routine to show how IntCell  objects are accessed   23
IntCell  declaration with javadoc comments   24
javadoc output for IntCell    25
A minimal Date  class that illustrates constructors and the equals  and toString  methods   26
Packages defined in this text   27
A class Exiting  with a single static method, which is part of the package Supporting    28
Aliasing example   29
Aliasing fixed   29
Example of a static initializer   30

Chapter 4 Inheritance    31

Part of the Exception  hierarchy   32
General layout of public inheritance   33
Constructor for new exception class Underflow ; uses super    34
Partial overriding   35
The hierarchy of shapes used in an inheritance example   36
Summary of final, static, abstract, and other methods   37
Programmer responsibilities for derived class   38
Basic action of insertion sort (shaded part is sorted)   39
Closer look at action of insertion sort (dark shading indicates sorted area; light shading is where 

new element was placed)   40
Basics of Interfaces   41
Generic MemoryCell  class; implemented via inheritance   42
Using the generic MemoryCell  class   43

Chapter 5 Algorithm Analysis    44

Running times for small inputs   45
Running time for moderate inputs   46
Functions in order of increasing growth rate   47
The subsequences used in Theorem 5.2   48
The subsequences used in Theorem 5.3. The sequence from p to q has sum at most that of the sub-

sequence from i to q. On the left, the sequence from i to q is itself not the maximum (by 
Theorem 5.2). On the right, the sequence from i to q has already been seen.   49

Growth rates defined   50
Meanings of the various growth functions   51
Observed running times (in seconds) for various maximum contiguous subsequence sum algo-

rithms   52
Empirical running time for N binary searches in an N-item array   53

Chapter 6 Data Structures    54

Stack model: input to a stack is by push , output is by top , deletion is by pop    55



Copyright  1998 by Addison-Wesley Publishing Company iii

Sample stack program; output is
Contents: 4 3 2 1 0    56

Queue model: input is by enqueue , output is by getFront , deletion is by dequeue    57
Sample queue program; output is

Contents:0 1 2 3 4    58
Link list model: inputs are arbitrary and ordered, any item may be output, and iteration is support-

ed, but this data structure is not time-efficient   59
Sample list program; output is 

Contents: 4 3 2 1 0 end    60
A simple linked list   61
A tree   62
Expression tree for (a+b)*(c-d)    63
Binary search tree model; the binary search is extended to allow insertions and deletions   64
Sample search tree program;

output is Found Becky; Mark not found;    65
The hash table model: any named item can be accessed or deleted in essentially constant time   66
Sample hash table program;

output is Found Becky;    67
Priority queue model: only the minimum element is accessible   68
Sample program for priority queues;

output is Contents: 0 1 2 3 4    69
Summary of some data structures   70

Chapter 7 Recursion    71

Stack of activation records   72
Ruler   73
Fractal star outline   74
Trace of the recursive calculation of the Fibonacci numbers   75
Divide-and-conquer algorithms   76
Dividing the maximum contiguous subsequence problem into halves   77
Trace of recursive calls for recursive maximum contiguous subsequence sum algorithm   78
Basic divide-and-conquer running time theorem   79
General divide-and-conquer running time theorem   80
Some of the subproblems that are solved recursively in Figure 7.15   81
Alternative recursive algorithm for coin-changing problem   82

Chapter 8 Sorting Algorithms    83

Examples of sorting   84
Shellsort after each pass, if increment sequence is {1, 3, 5}   85
Running time (milliseconds) of the insertion sort and Shellsort with various increment sequences   

86
Linear-time merging of sorted arrays (first four steps)   87
Linear-time merging of sorted arrays (last four steps)   88
Basic quicksort algorithm   89



Copyright 1998 by Addison-Wesley Publishing Company iv

The steps of quicksort   90
Correctness of quicksort   91
Partitioning algorithm: pivot element 6 is placed at the end   92
Partitioning algorithm: i  stops at large element 8; j  stops at small element 2   92
Partitioning algorithm: out-of-order elements 8 and 2 are swapped   92
Partitioning algorithm:  i  stops at large element 9; j  stops at small element 5   92
Partitioning algorithm: out-of-order elements 9 and 5 are swapped   92
Partitioning algorithm: i  stops at large element 9; j  stops at small element 3   92
Partitioning algorithm: swap pivot and element in position i    92
Original array   93
Result of sorting three elements (first, middle, and last)   93
Result of swapping the pivot with next-to-last element   93
Median-of-three partitioning optimizations   94
Quickselect algorithm   95

Chapter 9 Randomization    96

Distribution of lottery winners if expected number of winners is 2   97
Poisson distribution   98

Chapter 10 Fun and Games    99

Sample word search grid   100
Brute-force algorithm for word search puzzle   101
Alternate algorithm for word search puzzle   102
Improved algorithm for word search puzzle; incorporates a prefix test   103
Basic minimax algorithm   104
Alpha-beta pruning: After H2A is evaluated, C2, which is the minimum of the H2’s, is at best a 

draw. Consequently, it cannot be an improvement over C1. We therefore do not need to 
evaluate H2B, H2C, and H2D, and can proceed directly to C3   105

Two searches that arrive at identical positions   106

Chapter 11 Stacks and Compilers    107

Stack operations in balanced symbol algorithm   108
Steps in evaluation of a postfix expression   109
Associativity rules   110
Various cases in operator precedence parsing   111
Infix to postfix conversion   112
Expression tree for (a+b)*(c-d)    113

Chapter 12 Utilities    114

A standard coding scheme   115
Representation of the original code by a tree   116
A slightly better tree   117



Copyright  1998 by Addison-Wesley Publishing Company v

Optimal prefix code tree   118
Optimal prefix code   119
Huffman’s algorithm after each of first three merges   120
Huffman’s algorithm after each of last three merges   121
Encoding table (numbers on left are array indices)   122

Chapter 13 Simulation    123

The Josephus problem   124
Sample output for the modem bank simulation: 3 modems; a dial-in is attempted every minute; av-

erage connect time is 5 minutes; simulation is run for 19 minutes   125
Steps in the simulation   126
Priority queue for modem bank after each step   127

Chapter 14 Graphs and Paths    128

A directed graph   129
Adjacency list representation of graph in Figure 14.1; nodes in list i represent vertices adjacent to 

i and the cost of the connecting edge   130
Information maintained by the Graph table   131
Data structures used in a shortest path calculation, with input graph taken from a file: shortest 

weighted path from A to C is: A to B to E to D to C (cost 76)   132
If w is adjacent to v and there is a path to v, then there is a path to w   133
Graph after marking the start node as reachable in zero edges   134
Graph after finding all vertices whose path length from the start is 1   135
Graph after finding all vertices whose shortest path from the start is 2   136
Final shortest paths   137
How the graph is searched in unweighted shortest path computation   138
Eyeball is at v; w is adjacent; Dw should be lowered to 6   139
If Dv is minimal among all unseen vertices and all edge costs are nonnegative, then it represents 

the shortest path   140
Stages of Dijkstra’s algorithm   141
Graph with negative cost cycle   142
Topological sort   143
Stages of acyclic graph algorithm   144
Activity-node graph   145
Top: Event node grap; Bottom: Earliest completion time, latest completion time, and slack (addi-

tional edge item)   146

Chapter 15 Stacks and Queues    147

How the stack routines work: empty stack, push(A) , push(B) , pop    148
Basic array implementation of the queue   149
Array implementation of the queue with wraparound   150
Linked list implementation of the stack   151
Linked list implementation of the queue   152



Copyright 1998 by Addison-Wesley Publishing Company vi

enqueue  operation for linked-list-based implementation   153

Chapter 16 Linked Lists    154

Basic linked list   155
Insertion into a linked list: create new node (tmp ), copy in x , set tmp ’s next  reference, set 

current ’s next  reference   156
Deletion from a linked list   157
Using a header node for the linked list   158
Empty list when header node is used   159
Doubly linked list   160
Empty doubly linked list   161
Insertion into a doubly linked list by getting new node and then changing references in order indi-

cated   162
Circular doubly linked list   163

Chapter 17 Trees    164

A tree   165
Tree viewed recursively   166
First child/next sibling representation of tree in Figure 17.1   167
Unix directory   168
The directory listing for tree in Figure 17.4   169
Unix directory with file sizes   170
Trace of the size  method   171
Uses of binary trees: left is an expression tree and right is a Huffman coding tree   172
Result of a naive merge  operation   173
Aliasing problems in the merge  operation; T1 is also the current object   174
Recursive view used to calculate the size of a tree: ST = SL + SR + 1   175
Recursive view of node height calculation: HT = max(HL+1, HR +1 )   176
Preorder, postorder, and inorder visitation routes   177
Stack states during postorder traversal   178

Chapter 18 Binary Search Trees    179

Two binary trees (only the left tree is a search tree)   180
Binary search trees before and after inserting 6   181
Deletion of node 5 with one child, before and after   182
Deletion of node 2 with two children, before and after   183
Using the size  data field to implement findKth    184
Balanced tree on the left has a depth of log N; unbalanced tree on the right has a depth of N–1   185
Binary search trees that can result from inserting a permutation 1, 2, and 3; the balanced tree in the 

middle is twice as likely as any other   186
Two binary search trees: the left tree is an AVL tree, but the right tree is not (unbalanced nodes are 

darkened)   187
Minimum tree of height H   188



Copyright  1998 by Addison-Wesley Publishing Company vii

Single rotation to fix case 1   189
Single rotation fixes AVL tree after insertion of 1   190
Symmetric single rotation to fix case 4   191
Single rotation does not fix case 2   192
Left-right double rotation to fix case 2   193
Double rotation fixes AVL tree after insertion of 5   194
Left-right double rotation to fix case 3   195
Red-black tree properties   196
Example of a red-black tree; insertion sequence is 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 

55)   197
If S is black, then a single rotation between the parent and grandparent, with appropriate color 

changes, restores property 3 if X is an outside grandchild   198
If S is black, then a double rotation involving X, the parent, and the grandparent, with appropriate 

color changes, restores property 3 if X is an inside grandchild   199
If S is red, then a single rotation between the parent and grandparent, with appropriate color chang-

es, restores property 3 between X and P   200
Color flip; only if X’s parent is red do we continue with a rotation   201
Color flip at 50 induces a violation; because it is outside, a single rotation fixes it   202
Result of single rotation that fixes violation at node 50   203
Insertion of 45 as a red node   204
Deletion: X has two black children, and both of its sibling’s children are black; do a color flip   205
Deletion: X has two black children, and the outer child of its sibling is red; do a single rotation   206
Deletion: X has two black children, and the inner child of its sibling is red; do a double rotation   207
X is black and at least one child is red; if we fall through to next level and land on a red child, ev-

erything is good; if not, we rotate a sibling and parent   208
AA-tree properties   209
AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55, 35   210
skew  is a simple rotation between X and P   211
split  is a simple rotation between X and R; note that R’s level increases   212
After inserting 45 into sample tree; consecutive horizontal links are introduced starting at 35   213
After split  at 35; introduces a left horizontal link at 50   213
After skew  at 50; introduces consecutive horizontal nodes starting at 40   213
After split  at 40; 50 is now on the same level as 70, thus inducing an illegal left horizontal link   

214
After skew  at 70; this introduces consecutive horizontal links at 30   214
After split  at 30; insertion is complete   214
When 1 is deleted, all nodes become level 1, introducing horizontal left links   215
Five-ary tree of 31 nodes has only three levels   216
B-tree of order 5   217
B-tree properties   218
B-tree after insertion of 57 into tree in Figure 18.70   219
Insertion of 55 in B-tree in Figure 18.71 causes a split into two leaves   220
Insertion of 40 in B-tree in Figure 18.72 causes a split into two leaves and then a split of the parent 

node   221
B-tree after deletion of 99 from Figure 18.73   222



Copyright 1998 by Addison-Wesley Publishing Company viii

Chapter 19 Hash Tables    223

Linear probing hash table after each insertion   224
Illustration of primary clustering in linear probing (middle) versus no clustering (top) and the less 

significant secondary clustering in quadratic probing (bottom); long lines represent occu-
pied cells; Load factor is 0.7   225

Quadratic probing hash table after each insertion (note that the table size is poorly chosen because 
it is not a prime number)   226

Chapter 20 A Priority Queue: The Binary Heap    227

A complete binary tree and its array representation   228
Heap-order property   229
Two complete trees (only the left tree is a heap)   230
Attempt to insert 14, creating the hole and bubbling the hole up   231
The remaining two steps to insert 14 in previous heap   232
Creation of the hole at the root   233
Next two steps in deleteMin    234
Last two steps in deleteMin    235
Recursive view of the heap   236
Initial heap (left); after percolateDown(7)  (right)   237
After percolateDown(6)  (left); after percolateDown(5)  (right)   237
After percolateDown(4)  (left); after percolateDown(3)  (right)   238
After percolateDown(2)  (left); after percolateDown(1)  and fixHeap  terminates (right)   

238
Marking of left edges for height-one nodes   239
Marking of first left and subsequent right edge for height-two nodes   239
Marking of first left and subsequent two right edges for height-three nodes   240
Marking of first left and subsequent right edges for height-four node   240
(Max) Heap after fixHeap  phase   241
Heapsort algorithm (in principle)   242
Heap after first deleteMax    243
Heap after second deleteMax    243
Initial tape configuration   244
Distribution of length 3 runs onto two tapes   245
Tapes after first round of merging (run length = 6)   245
Tapes after second round of merging (run length = 12)   245
Tapes after third round of merging   245
Initial distribution of length 3 runs onto three tapes   246
After one round of three-way merging (run length = 9)   246
After two rounds of three-way merging   246
Number of runs using polyphase merge   247
Example of run construction   248

Chapter 21 Splay Trees    249

Rotate-to-root strategy applied when node 3 is accessed   250



Copyright  1998 by Addison-Wesley Publishing Company ix

Insertion of 4 using rotate-to-root   251
Sequential access of items takes quadratic time   252
Zig case (normal single rotation)   253
Zig-zag case (same as a double rotation); symmetric case omitted   253
Zig-zig case (this is unique to the splay tree); symmetric case omitted   253
Result of splaying at node 1 (three zig-zigs and a zig)   254
The remove  operation applied to node 6: First 6 is splayed to the root, leaving two subtrees; a 

findMax  on the left subtree is performed, raising 5 to the root of the left subtree; then the 
right subtree can be attached (not shown)   255

Top-down splay rotations: zig (top), zig-zig (middle), and zig-zag (bottom)   256
Simplified top-down zig-zag   257
Final arrangement for top-down splaying   258
Steps in top-down splay (accessing 19 in top tree)   259

Chapter 22 Merging Priority Queues    260

Simplistic merging of heap-ordered trees; right paths are merged   261
Merging of skew heap; right paths are merged, and the result is made a left path   262
Skew heap algorithm (recursive viewpoint)   263
Change in heavy/light status after a merge   264
Abstract representation of sample pairing heap   265
Actual representation of above pairing heap; dark line represents a pair of references that connect 

nodes in both directions   265
Recombination of siblings after a deleteMin ; in each merge the larger root tree is made the left 

child of the smaller root tree: (a) the resulting trees; (b) after the first pass; (c) after the first 
merge of the second pass; (d) after the second merge of the second pass   266

compareAndLink  merges two trees   267

Chapter 23 The Disjoint Set Class    268

Definition of equivalence relation   269
A graph G (left) and its minimum spanning tree   270
Kruskal’s algorithm after each edge is considered   271
The nearest common ancestor for each request in the pair sequence (x,y), (u,z), (w,x), (z,w), (w,y), 

is A, C, A, B, and y, respectively   272
The sets immediately prior to the return from the recursive call to D ; D is marked as visited and 

NCA(D, v) is v ’s anchor to the current path   273
After the recursive call from D returns, we merge the set anchored by D into the set anchored by 

C and then compute all NCA(C, v) for nodes v that are marked prior to completing C’s re-
cursive call   274

Forest and its eight elements, initially in different sets   275
Forest after union  of trees with roots 4 and 5   275
Forest after union  of trees with roots 6 and 7   276
Forest after union  of trees with roots 4 and 6   276
Forest formed by union-by-size, with size encoded as a negative number   277
Worst-case tree for N =16   278



Copyright 1998 by Addison-Wesley Publishing Company x

Forest formed by union-by-height, with height encoded as a negative number   279
Path compression resulting from a find (14) on the tree in Figure 23.12   280
Ackermann’s function and its inverse   281
Accounting used in union-find proof   282
Actual partitioning of ranks into groups used in the union-find proof   283


