
Copyright  1998 by Addison-Wesley Publishing Company 223

Chapter 19

Hash Tables

Copyright  1998 by Addison-Wesley Publishing Company 224

Linear probing hash table after each insertion

0

1

2

3

4

5

6

7

8

9

hash(89, 10) = 9
hash(18, 10) = 8
hash(49, 10) = 9
hash(58, 10) = 8
hash(9, 10) = 9

After Insert 89 After Insert 18 After Insert 49 After Insert 58 After Insert 9

89 89 89 89 89

18 18 18 18

49 49 49

58 58

 9

Copyright  1998 by Addison-Wesley Publishing Company 225

Illustration of primary clustering in linear probing (middle)
versus no clustering (top) and the less significant second-
ary clustering in quadratic probing (bottom); long lines rep-
resent occupied cells; Load factor is 0.7

Copyright  1998 by Addison-Wesley Publishing Company 226

Quadratic probing hash table after each insertion (note that
the table size is poorly chosen because it is not a prime
number)

0

1

2

3

4

5

6

7

8

9

hash(89, 10) = 9
hash(18, 10) = 8
hash(49, 10) = 9
hash(58, 10) = 8
hash(9, 10) = 9

After Insert 89 After Insert 18 After Insert 49 After Insert 58 After Insert 9

89 89 89 89 89

18 18 18 18

49 49 49

58 58

 9

Copyright  1998 by Addison-Wesley Publishing Company 227

Chapter 20

A Priority Queue: The Binary Heap

Copyright  1998 by Addison-Wesley Publishing Company 228

A complete binary tree and its array representation

A

B C

D E F G

H I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J

1

2 3

5

9 108

4 6 7

Copyright  1998 by Addison-Wesley Publishing Company 229

Heap-order property

X

P

P X≤

Copyright  1998 by Addison-Wesley Publishing Company 230

Two complete trees (only the left tree is a heap)

13

21 16

24 31 19 68

65 26 32

13

21 16

6 31 19 68

65 26 32

Copyright  1998 by Addison-Wesley Publishing Company 231

Attempt to insert 14, creating the hole and bubbling the
hole up

13

21 16

24 31 19 68

65 26 32

13

21 16

24 19 68

65 26 32 31

14

Copyright  1998 by Addison-Wesley Publishing Company 232

The remaining two steps to insert 14 in previous heap

13

16

24 21 19 68

65 26 32

13

14 16

24 21 19 68

65 26 32 31

1414

31

Copyright  1998 by Addison-Wesley Publishing Company 233

Creation of the hole at the root

13

14 16

19 21 19 68

65 26 32

14 16

19 21 19 68

65 26 32 31

Min=13

31

Copyright  1998 by Addison-Wesley Publishing Company 234

Next two steps in deleteMin

14

16

19 21 19 68

65 26 32

14

19 16

21 19 68

65 26 32 3131

Copyright  1998 by Addison-Wesley Publishing Company 235

Last two steps in deleteMin

14

19 16

26 21 19 68

65 32

14

19 16

21 19 68

65 31 32

26

31

Copyright  1998 by Addison-Wesley Publishing Company 236

Recursive view of the heap

R

Copyright  1998 by Addison-Wesley Publishing Company 237

Initial heap (left); after percolateDown(7) (right)

After percolateDown(6) (left); after
percolateDown(5) (right)

92

47 21

20 12 45 63

61 55 83 736437 2517

92

47 21

20 12 45 63

61 55 83 736437 2517

61 55 83 736437 4517 61 55 83 736437 4517

20 12 25 63 20 12 25 63

47 21 47 21

92 92

Copyright  1998 by Addison-Wesley Publishing Company 238

After percolateDown(4) (left); after
percolateDown(3) (right)

After percolateDown(2) (left); after
percolateDown(1) and fixHeap terminates
(right)

61 55 83 736437 4520 61 55 83 736437 4517

17 12 25 63 20 12 25 63

47 21 47 21

92 92

61 55 83 736447 4520 61 55 83 73644592 47

17 37 25 63 20 37 25 63

12 21 17 21

92 12

Copyright  1998 by Addison-Wesley Publishing Company 239

Marking of left edges for height-one nodes

Marking of first left and subsequent right edge for height-
two nodes

Copyright  1998 by Addison-Wesley Publishing Company 240

Marking of first left and subsequent two right edges for
height-three nodes

Marking of first left and subsequent right edges for height-
four node

Copyright  1998 by Addison-Wesley Publishing Company 241

(Max) Heap after fixHeap phase

0 1 2 3 4 5 6 7 8 9 10 11 12 13

53 59 26 41 58 31 16 21 3697

16 21 36

26 41 58 31

53 59

97

Copyright  1998 by Addison-Wesley Publishing Company 242

1. toss each item into a binary heap.
2. Apply fixHeap .
3. Call deleteMin N times; the items will exit the heap in sorted order.

Heapsort algorithm (in principle)

Copyright  1998 by Addison-Wesley Publishing Company 243

Heap after first deleteMax

Heap after second deleteMax

0 1 2 3 4 5 6 7 8 9 10 11 12 13

53 58 26 41 36 31 16 21 9759

16 21 97

26 41 36 31

53 58

59

0 1 2 3 4 5 6 7 8 9 10 11 12 13

53 36 26 41 21 31 16 59 9758

16 59 97

26 41 21 31

53 36

58

Copyright  1998 by Addison-Wesley Publishing Company 244

A1 81 94 11 96 12 35 17 99 28 58 41 75 15

A2

B1

B2

Initial tape configuration

Copyright  1998 by Addison-Wesley Publishing Company 245

A1

A2

B1 11 81 94 17 28 99 15

B2 12 35 96 41 58 75

Distribution of length 3 runs onto two tapes

A1 11 12 35 81 94 96 15

A2 17 28 41 58 75 99

B1

B2

Tapes after first round of merging (run length = 6)

A1

A2

B1 11 12 17 28 35 41 58 75 81 94 96 99

B2 15

Tapes after second round of merging (run length = 12)

A1 11 12 15 17 28 35 41 58 75 81 94 96 99

A2

B1

B2

Tapes after third round of merging

Copyright  1998 by Addison-Wesley Publishing Company 246

A1

A2

A3

B1 11 81 94 41 58 75

B2 12 35 96 15

B3 17 28 99

Initial distribution of length 3 runs onto three tapes

A1 11 12 17 28 35 81 94 96 99

A2 15 41 58 75

A3

B1

B2

B3

After one round of three-way merging (run length = 9)

A1

A2

A3

B1 11 12 15 17 28 35 41 58 75 81 94 96 99

B2

B3

After two rounds of three-way merging

Copyright  1998 by Addison-Wesley Publishing Company 247

Run After

Const. T3+T2 T1+T2 T1+T3 T2+T3 T1+T2 T1+T3 T2+T3

T1
T2
T3

0
21
13

13
8
0

5
0
8

0
5
3

3
2
0

1
0
2

0
1
1

1
0
0

Number of runs using polyphase merge

Copyright  1998 by Addison-Wesley Publishing Company 248

3 Elements in Heap Array
Output

Next Item

array[1] array[2] array[3] Read

11 94 81 11 96

81 94 96 81 12

Run 1 94 96 12 94 35

96 35 12 96 17

17 35 12 End of Run Rebuild
Heap

Run 2

12 35 17 12 99

17 35 99 17 28

28 99 35 28 58

35 99 58 35 41

41 99 58 41 75

58 99 75 58 15

75 99 15 75 End of Tape

99 15 99

15 End of Run Rebuild
Heap

Run 3 15 15

Example of run construction

Copyright  1998 by Addison-Wesley Publishing Company 249

Chapter 21

Splay Trees

Copyright  1998 by Addison-Wesley Publishing Company 250

Rotate-to-root strategy applied when node 3 is accessed

4

2 5

1 3

4

3 5

2

1

3

2 4

1 5

Copyright  1998 by Addison-Wesley Publishing Company 251

Insertion of 4 using rotate-to-root

3

2 4

1

4

3

2

1

3

2

1

Copyright  1998 by Addison-Wesley Publishing Company 252

Sequential access of items takes quadratic time

4

3

2

1

3

2 4

1

1

4

3

2

2

4

3

1

4

3

2

1

Copyright  1998 by Addison-Wesley Publishing Company 253

Zig case (normal single rotation)

Zig-zag case (same as a double rotation); symmetric case
omitted

Zig-zig case (this is unique to the splay tree); symmetric
case omitted

A BB C

C A P

X

X

P

A A B C

B C

D

D

G

P

X

P G

X

B

C

A

B

C D

D A

G

P

X G

P

X

Copyright  1998 by Addison-Wesley Publishing Company 254

Result of splaying at node 1 (three zig-zigs and a zig)

1

2

2

22

3

3

5

51

5 5

4 4 4

4

3

3

7

6

1

7 1

7

6 6

7

6

Copyright  1998 by Addison-Wesley Publishing Company 255

The remove operation applied to node 6: First 6 is
splayed to the root, leaving two subtrees; a findMax on
the left subtree is performed, raising 5 to the root of the left
subtree; then the right subtree can be attached (not shown)

2 6

1 5 7

1 1 1

5 2 5 2

4 4 7 4 7

6 54

2

7

Copyright  1998 by Addison-Wesley Publishing Company 256

Top-down splay rotations: zig (top), zig-zig (middle), and
zig-zag (bottom)

X

L R

A B

X

Y
L R

A

Y

B

X

L R L
B

Z

R

A C

X

C

L R L
A

Z

R

Y

B C

X
A B

Y

Z

X

C

A B

Y

Z
Y

Copyright  1998 by Addison-Wesley Publishing Company 257

Simplified top-down zig-zag

L R L

B

Z
R

A

C

X

X

C

A B

Y

Z

Y

Copyright  1998 by Addison-Wesley Publishing Company 258

Final arrangement for top-down splaying

L R

A B

X

L R

BA

X

Copyright  1998 by Addison-Wesley Publishing Company 259

Steps in top-down splay (accessing 19 in top tree)

3024

25

20

18

16

15

13

12

5

15

13

12

5

3024

25

20

3024

25

20

16

18

12

5 18

16

15

13

12

5

18

16

15

13

20

24

25

30

Empty

18

16

15

13

20

24

25

30

EmptyEmpty

Simplified zig-zag

Zig-zig

Zig

Reassemble

12

5

Copyright  1998 by Addison-Wesley Publishing Company 260

Chapter 22

Merging Priority Queues

Copyright  1998 by Addison-Wesley Publishing Company 261

Simplistic merging of heap-ordered trees; right paths are
merged

8

7

9 7

5

6

33

5

9

6

8

Copyright  1998 by Addison-Wesley Publishing Company 262

Merging of skew heap; right paths are merged, and the
result is made a left path

8

5

9 5

4

3

22

4

9

3

8

76

7

6

Copyright  1998 by Addison-Wesley Publishing Company 263

A recursive viewpoint is as follows: Let L be the tree with the smaller root, and
let R be the other tree.

1. If one tree is empty, the other can be used as the merged result.
2. Otherwise, let Temp be the right subtree of L.
3. Make L’s left subtree its new right subtree.
4. Make the result of the recursive merge of Temp and R the new left subtree of

L.

Skew heap algorithm (recursive viewpoint)

Copyright  1998 by Addison-Wesley Publishing Company 264

Change in heavy/light status after a merge

8

5

9 5

4

3

22

4

9

3

8

76

7

6

L

L H

L

L

L

L

L

Copyright  1998 by Addison-Wesley Publishing Company 265

Abstract representation of sample pairing heap

Actual representation of above pairing heap; dark line rep-
resents a pair of references that connect nodes in both
directions

151181310 1917

795436

2

1214

1816

151181310 1917

795436

2

1214

1816

Copyright  1998 by Addison-Wesley Publishing Company 266

Recombination of siblings after a deleteMin ; in each
merge the larger root tree is made the left child of the
smaller root tree: (a) the resulting trees; (b) after the first
pass; (c) after the first merge of the second pass; (d) after
the second merge of the second pass

151181310 1917

795436

1214

1816

1511

81310 19

17

7

95

43

6

1214

1816

1511

81310

19

17

7

9

5

43

6

1214 1816

1511

8

1310

19

17

7

9

5

4

3

6

1214 1816

(a)

(b)

(c)

(d)

Copyright  1998 by Addison-Wesley Publishing Company 267

compareAndLink merges two trees

A B

C

SF A

S

F

B

C

B

F

S

A

C

F S>

F S≤

Copyright  1998 by Addison-Wesley Publishing Company 268

Chapter 23

The Disjoint Set Class

Copyright  1998 by Addison-Wesley Publishing Company 269

A relation R is defined on a set S if for every pair of elements , ,
a R b is either true or false. If a R b is true, then we say that a is related to b. An
equivalence relation is a relation R that satisfies three properties:

• Reflexive: a R a is true for all

• Symmetric: a R b if and only if b R a

• Transitive: a R b and b R c implies that a R c

Definition of equivalence relation

a b,() a b, S∈

a S∈

Copyright  1998 by Addison-Wesley Publishing Company 270

A graph G (left) and its minimum spanning tree

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

V1V0

V2 V3 V4

V5 V6

2

2 2

1

1

4

Copyright  1998 by Addison-Wesley Publishing Company 271

Kruskal’s algorithm after each edge is considered

V1V0

V2 V3 V4

V5 V6

1

V1V0

V2 V3 V4

V5 V61

1

V1V0

V2 V3 V4

V5 V6

2

2

1

1

V1V0

V2 V3 V4

V5 V6

2

1

1

V1V0

V2 V3 V4

V5 V6

2

2 2

1

14

V1V0

V2 V3 V4

V5 V6

2

2 2

1

1

4

V1V0

V2 V3 V4

V5 V6

2

2 2

1

31

V1V0

V2 V3 V4

V5 V6

2

2 2

1

1

Copyright  1998 by Addison-Wesley Publishing Company 272

The nearest common ancestor for each request in the pair
sequence (x,y), (u,z), (w,x), (z,w), (w,y), is A, C, A, B, and
y, respectively

A

C

B

Du

z

w

yx

Copyright  1998 by Addison-Wesley Publishing Company 273

The sets immediately prior to the return from the recursive
call to D; D is marked as visited and NCA(D, v) is v ’s
anchor to the current path

A

C

B

q

p

rD

Copyright  1998 by Addison-Wesley Publishing Company 274

After the recursive call from D returns, we merge the set
anchored by D into the set anchored by C and then com-
pute all NCA(C, v) for nodes v that are marked prior to
completing C’s recursive call

A

C

B

Copyright  1998 by Addison-Wesley Publishing Company 275

Forest and its eight elements, initially in different sets

Forest after union of trees with roots 4 and 5

–1

1

–1

–1

–1

–1

–1

–1

–175 64320

0

4

2

3

7

5

6

1

–1

1

–1

–1

–1

–1

4

–1

–17

5

64320

0

4

2

3

7

5

6

1

Copyright  1998 by Addison-Wesley Publishing Company 276

Forest after union of trees with roots 6 and 7

Forest after union of trees with roots 4 and 6

–1

1

–1

–1

–1

6

4

–1

–1

75

64320

0

4

2

3

7

5

6

1

–1

1

–1

–1

–1

6

4

4

–1

7

5 6

4320

0

4

2

3

7

5

6

1

Copyright  1998 by Addison-Wesley Publishing Company 277

Forest formed by union-by-size, with size encoded as a
negative number

–1

1

–5

–1

4

6

4

4

–1

7

5 6

4

3

20

0

4

2

3

7

5

6

1

Copyright  1998 by Addison-Wesley Publishing Company 278

Worst-case tree for N =16

3

1 2

0

7

5 6

4

11

9 10

8

15

13 14

12

Copyright  1998 by Addison-Wesley Publishing Company 279

Forest formed by union-by-height, with height encoded as
a negative number

–1

1

–3

–1

4

6

4

4

–1

7

5 6

4

3

20

0

4

2

3

7

5

6

1

Copyright  1998 by Addison-Wesley Publishing Company 280

Path compression resulting from a find (14) on the tree in
Figure 23.12

7

5 6

4

11

9 10

8

13

12

3

1 2

0

15

14

Copyright  1998 by Addison-Wesley Publishing Company 281

Ackermann’s function is defined as:

From this, we define the inverse Ackermann’s function as

Ackermann’s function and its inverse

A 1 j,() 2j=

A i 1,() A i 1– 2,()=

A i j,() A i 1– A i j, 1–(),()=

j 1≥
i 2≥

i j, 2≥

α M N,() min i 1≥ A i M N⁄,() Nlog>(){ }=

Copyright  1998 by Addison-Wesley Publishing Company 282

To incorporate path compression into the proof, we use the following fancy
accounting: For each node v on the path from the accessed node i to the root, we
deposit one penny under one of two accounts:

1. If v is the root, or if the parent of v is the root, or if the parent of v is in a dif-
ferent rank group from v, then charge one unit under this rule. This deposits
an American penny into the kitty.

2. Otherwise, deposit a Canadian penny into the node.

Accounting used in union-find proof

Copyright  1998 by Addison-Wesley Publishing Company 283

Group Rank

0 0

1 1

2 2

3 3,4

4 5 through 16

5 17 through 65536

6 65537 through 265536

7 Truly huge ranks

Actual partitioning of ranks into groups used in the union-
find proof

