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Chapter 19

Hash Tables
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Linear probing hash table after each insertion

0

1

2

3

4

5

6

7

8

9

hash( 89, 10 ) = 9
hash( 18, 10 ) = 8
hash( 49, 10 ) = 9
hash( 58, 10 ) = 8
hash(  9, 10 ) = 9

After Insert 89 After Insert 18 After Insert 49 After Insert 58 After Insert 9

89 89 89 89 89

18 18 18 18

49 49 49

58 58

  9
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Illustration of primary clustering in linear probing (middle) 
versus no clustering (top) and the less significant second-
ary clustering in quadratic probing (bottom); long lines rep-
resent occupied cells; Load factor is 0.7
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Quadratic probing hash table after each insertion (note that 
the table size is poorly chosen because it is not a prime 
number)

0

1

2

3

4

5

6

7

8

9

hash( 89, 10 ) = 9
hash( 18, 10 ) = 8
hash( 49, 10 ) = 9
hash( 58, 10 ) = 8
hash(  9, 10 ) = 9

After Insert 89 After Insert 18 After Insert 49 After Insert 58 After Insert 9

89 89 89 89 89

18 18 18 18

49 49 49

58 58

  9
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Chapter 20

A Priority Queue: The Binary Heap
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A complete binary tree and its array representation

A

B C

D E F G

H I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J

1 

2 3

5

9 108

4 6 7
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Heap-order property

X

P

P X≤
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Two complete trees (only the left tree is a heap)

13

21 16

24 31 19 68

65 26 32

13

21 16

6 31 19 68

65 26 32
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Attempt to insert 14, creating the hole and bubbling the 
hole up

13

21 16

24 31 19 68

65 26 32

13

21 16

24 19 68

65 26 32 31

14
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The remaining two steps to insert 14 in previous heap

13

16

24 21 19 68

65 26 32

13

14 16

24 21 19 68

65 26 32 31

1414

31
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Creation of the hole at the root

13

14 16

19 21 19 68

65 26 32

14 16

19 21 19 68

65 26 32 31

Min=13

31
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Next two steps in deleteMin

14

16

19 21 19 68

65 26 32

14

19 16

21 19 68

65 26 32 3131
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Last two steps in deleteMin

14

19 16

26 21 19 68

65 32

14

19 16

21 19 68

65 31 32

26

31
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Recursive view of the heap

R
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Initial heap (left); after percolateDown(7)  (right)

After percolateDown(6)  (left); after 
percolateDown(5)  (right)

92

47 21

20 12 45 63

61 55 83 736437 2517

92

47 21

20 12 45 63

61 55 83 736437 2517

61 55 83 736437 4517 61 55 83 736437 4517

20 12 25 63 20 12 25 63

47 21 47 21

92 92
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After percolateDown(4)  (left); after 
percolateDown(3)  (right)

After percolateDown(2)  (left); after 
percolateDown(1)  and fixHeap  terminates 
(right)

61 55 83 736437 4520 61 55 83 736437 4517

17 12 25 63 20 12 25 63

47 21 47 21

92 92

61 55 83 736447 4520 61 55 83 73644592 47

17 37 25 63 20 37 25 63

12 21 17 21

92 12
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Marking of left edges for height-one nodes

Marking of first left and subsequent right edge for height-
two nodes



Copyright  1998 by Addison-Wesley Publishing Company 240

Marking of first left and subsequent two right edges for 
height-three nodes

Marking of first left and subsequent right edges for height-
four node
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(Max) Heap after fixHeap  phase

0 1 2 3 4 5 6 7 8 9 10 11 12 13

53 59 26 41 58 31 16 21 3697

16 21 36

26 41 58 31

53 59

97
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1. toss  each item into a binary heap.
2. Apply fixHeap .
3. Call deleteMin  N times; the items will exit the heap in sorted order.

Heapsort algorithm (in principle)
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Heap after first deleteMax

Heap after second deleteMax

0 1 2 3 4 5 6 7 8 9 10 11 12 13

53 58 26 41 36 31 16 21 9759

16 21 97

26 41 36 31

53 58

59

0 1 2 3 4 5 6 7 8 9 10 11 12 13

53 36 26 41 21 31 16 59 9758

16 59 97

26 41 21 31

53 36

58
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A1 81 94 11 96 12 35 17 99 28 58 41 75 15

A2

B1

B2

Initial tape configuration
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A1

A2

B1 11 81 94 17 28 99 15

B2 12 35 96 41 58 75

Distribution of length 3 runs onto two tapes

A1 11 12 35 81 94 96 15

A2 17 28 41 58 75 99

B1

B2

Tapes after first round of merging (run length = 6)

A1

A2

B1 11 12 17 28 35 41 58 75 81 94 96 99

B2 15

Tapes after second round of merging (run length = 12)

A1 11 12 15 17 28 35 41 58 75 81 94 96 99

A2

B1

B2

Tapes after third round of merging
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A1

A2

A3

B1 11 81 94 41 58 75

B2 12 35 96 15

B3 17 28 99

Initial distribution of length 3 runs onto three tapes

A1 11 12 17 28 35 81 94 96 99

A2 15 41 58 75

A3

B1

B2

B3

After one round of three-way merging (run length = 9)

A1

A2

A3

B1 11 12 15 17 28 35 41 58 75 81 94 96 99

B2

B3

After two rounds of three-way merging
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Run After

Const. T3+T2 T1+T2 T1+T3 T2+T3 T1+T2 T1+T3 T2+T3

T1
T2
T3

0
21
13

13
8
0

5
0
8

0
5
3

3
2
0

1
0
2

0
1
1

1
0
0

Number of runs using polyphase merge
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3 Elements in Heap Array
Output

Next Item

array[1] array[2] array[3] Read

11 94 81 11 96

81 94 96 81 12

Run 1 94 96 12 94 35

96 35 12 96 17

17 35 12 End of Run Rebuild 
Heap

Run 2

12 35 17 12 99

17 35 99 17 28

28 99 35 28 58

35 99 58 35 41

41 99 58 41 75

58 99 75 58 15

75 99 15 75 End of Tape

99 15 99

15 End of Run Rebuild 
Heap

Run 3 15 15

Example of run construction
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Chapter 21

Splay Trees
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Rotate-to-root strategy applied when node 3 is accessed

4

2 5

1 3

4

3 5

2

1

3

2 4

1 5
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Insertion of 4 using rotate-to-root

3

2 4

1

4

3

2

1

3

2

1
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Sequential access of items takes quadratic time

4

3

2

1

3

2 4

1

1

4

3

2

2

4

3

1

4

3

2

1
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Zig case (normal single rotation)

Zig-zag case (same as a double rotation); symmetric case 
omitted

Zig-zig case (this is unique to the splay tree); symmetric 
case omitted

A BB C

C A P

X

X

P

A A B C

B C

D

D

G

P

X

P G

X

B

C

A

B

C D

D A

G

P

X G

P

X
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Result of splaying at node 1 (three zig-zigs and a zig)

1

2

2

22

3

3

5

51

5 5

4 4 4

4

3

3

7

6

1

7 1

7

6 6

7

6
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The remove  operation applied to node 6: First 6 is 
splayed to the root, leaving two subtrees; a findMax  on 
the left subtree is performed, raising 5 to the root of the left 
subtree; then the right subtree can be attached (not shown)

2 6

1 5 7

1 1 1

5 2 5 2

4 4 7 4 7

6 54

2

7
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Top-down splay rotations: zig (top), zig-zig (middle), and 
zig-zag (bottom)

X

L R

A B

X

Y
L R

A

Y

B

X

L R L
B

Z

R

A C

X

C

L R L
A

Z

R

Y

B C

X
A B

Y

Z

X

C

A B

Y

Z
Y
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Simplified top-down zig-zag

L R L

B

Z
R

A

C

X

X

C

A B

Y

Z

Y
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Final arrangement for top-down splaying

L R

A B

X

L R

BA

X
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Steps in top-down splay (accessing 19 in top tree)

3024

25

20

18

16

15

13

12

5

15

13

12

5

3024

25

20

3024

25

20

16

18

12

5 18

16

15

13

12

5

18

16

15

13

20

24

25

30

Empty

18

16

15

13

20

24

25

30

EmptyEmpty

Simplified zig-zag

Zig-zig

Zig

Reassemble

12

5
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Chapter 22

Merging Priority Queues
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Simplistic merging of heap-ordered trees; right paths are 
merged

8

7

9 7

5

6

33

5

9

6

8
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Merging of skew heap; right paths are merged, and the 
result is made a left path

8

5

9 5

4

3

22

4

9

3

8

76

7

6
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A recursive viewpoint is as follows: Let L be the tree with the smaller root, and
let R be the other tree.

1. If one tree is empty, the other can be used as the merged result.
2. Otherwise, let Temp be the right subtree of L.
3. Make L’s left subtree its new right subtree.
4. Make the result of the recursive merge of Temp and R the new left subtree of 

L.

Skew heap algorithm (recursive viewpoint)
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Change in heavy/light status after a merge

8

5

9 5

4

3

22

4

9

3

8

76

7

6

L

L H

L

L

L

L

L
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Abstract representation of sample pairing heap

Actual representation of above pairing heap; dark line rep-
resents a pair of references that connect nodes in both 
directions

151181310 1917

795436

2

1214

1816

151181310 1917

795436

2

1214

1816
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Recombination of siblings after a deleteMin ; in each 
merge the larger root tree is made the left child of the 
smaller root tree: (a) the resulting trees; (b) after the first 
pass; (c) after the first merge of the second pass; (d) after 
the second merge of the second pass

151181310 1917

795436

1214

1816

1511

81310 19

17

7

95

43

6

1214

1816

1511

81310

19

17

7

9

5

43

6

1214 1816

1511

8

1310

19

17

7

9

5

4

3

6

1214 1816

(a)

(b)

(c)

(d)
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compareAndLink  merges two trees

A B

C

SF A

S

F

B

C

B

F

S

A

C

F S>

F S≤
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Chapter 23

The Disjoint Set Class
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A relation R is defined on a set S if for every pair of elements , ,
a R b is either true or false. If a R b is true, then we say that a is related to b. An
equivalence relation is a relation R that satisfies three properties:

• Reflexive: a R a is true for all 

• Symmetric: a R b if and only if b R a

• Transitive: a R b and b R c implies that a R c

Definition of equivalence relation

a b,(  ) a b, S∈

a S∈
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A graph G (left) and its minimum spanning tree

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

V1V0

V2 V3 V4

V5 V6

2

2 2

1

1

4
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Kruskal’s algorithm after each edge is considered

V1V0

V2 V3 V4

V5 V6

1

V1V0

V2 V3 V4

V5 V61

1

V1V0

V2 V3 V4

V5 V6

2

2

1

1

V1V0

V2 V3 V4

V5 V6

2

1

1

V1V0

V2 V3 V4

V5 V6

2

2 2

1

14

V1V0

V2 V3 V4

V5 V6

2

2 2

1

1

4

V1V0

V2 V3 V4

V5 V6

2

2 2

1

31

V1V0

V2 V3 V4

V5 V6

2

2 2

1

1
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The nearest common ancestor for each request in the pair 
sequence (x,y), (u,z), (w,x), (z,w), (w,y), is A, C, A, B, and 
y, respectively

A

C

B

Du

z

w

yx
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The sets immediately prior to the return from the recursive 
call to D; D is marked as visited and NCA(D, v) is v ’s 
anchor to the current path

A

C

B

q

p

rD
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After the recursive call from D returns, we merge the set 
anchored by D into the set anchored by C and then com-
pute all NCA(C, v) for nodes v that are marked prior to 
completing C’s recursive call

A

C

B
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Forest and its eight elements, initially in different sets

Forest after union  of trees with roots 4 and 5
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Forest after union  of trees with roots 6 and 7

Forest after union  of trees with roots 4 and 6
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Forest formed by union-by-size, with size encoded as a 
negative number
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Worst-case tree for N =16
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Forest formed by union-by-height, with height encoded as 
a negative number
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Path compression resulting from a find (14) on the tree in 
Figure 23.12
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Ackermann’s function is defined as:

From this, we define the inverse Ackermann’s function as

Ackermann’s function and its inverse

A 1 j,(  ) 2j=

A i 1,(  ) A i 1– 2,( )=

A i j,(  ) A i 1– A i j, 1–(  ),(  )=

j 1≥
i 2≥

i j, 2≥

α M N,(  ) min i 1≥ A i M N⁄,(  ) Nlog>( ){ }=
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To incorporate path compression into the proof, we use the following fancy
accounting: For each node v on the path from the accessed node i to the root, we
deposit one penny under one of two accounts:

1. If v is the root, or if the parent of v is the root, or if the parent of v is in a dif-
ferent rank group from v, then charge one unit under this rule. This deposits 
an American penny into the kitty.

2. Otherwise, deposit a Canadian penny into the node.

Accounting used in union-find proof
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Group Rank

0 0

1 1

2 2

3 3,4

4 5 through 16

5 17 through 65536

6 65537 through 265536

7 Truly huge ranks

Actual partitioning of ranks into groups used in the union-
find proof


