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Chapter 15

Stacks and Queues
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How the stack routines work: empty stack, push(A) , 
push(B) , pop

tos (0)

tos (1)

tos (0)

tos (-1)

A A A

B
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Basic array implementation of the queue

front

front

front

front

front

back

back

back

back

back

A

A B

B

size = 0

size = 1

size = 2

size = 1

size = 0

makeEmpty( )

enqueue(A)

enqueue(B)

dequeue( )

dequeue( )
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Array implementation of the queue with wraparound

front

front

front

front

front

back

back

back

back

back

F

F

E

size = 3

size = 4

size = 3

size = 2

size = 1

After 3 enqueues

enqueue(F)

dequeue( )

dequeue( )

dequeue( )

F

F

D E

C D E

C D E
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Linked list implementation of the stack

ABCD

topOfStack
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Linked list implementation of the queue

A B C D

front back
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enqueue  operation for linked-list-based implementation

back

X

back

...

...

Before

After
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Chapter 16

Linked Lists
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Basic linked list

A B C D

frontOfList
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Insertion into a linked list: create new node (tmp ), copy in 
x , set tmp ’s next  reference, set current ’s next  
reference

current

... ...

x

A B

tmp
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Deletion from a linked list

current

... ...
XA B
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Using a header node for the linked list

A B C

header
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Empty list when header node is used

header
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Doubly linked list

head tail

A B
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Empty doubly linked list

head tail
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Insertion into a doubly linked list by getting new node and 
then changing references in order indicated

... ...A B

X
a b
c d
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Circular doubly linked list

first

A B C D
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Chapter 17

Trees
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A tree

A

B C D E

F G H I J

K
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Tree viewed recursively

...

root

T1 T2 T3 Tk
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First child/next sibling representation of tree in Figure 17.1

A

B C D E

F G H I J

K
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Unix directory

mark*

books* courses*

ecp*dsaa* ipps*

ch1 ch2 ch1 ch2 ch2ch1

cop3223* cop3530*

syl syl

.login
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mark
        books
                dsaa
                        ch1
                        ch2
                ecp
                        ch1
                        ch2
                ipps
                        ch1
                        ch2
        courses
                cop3223
                        syl
                cop3530
                        syl
        .login

The directory listing for tree in Figure 17.4
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Unix directory with file sizes

mark*(1)

books*(1) courses*(1)

ecp*(1)dsaa*(1) ipps*(1)

ch1(9) ch2(7) ch1(4) ch2(6) ch2(8)ch1(3)

cop3223*(1) cop3530*(1)

syl(2) syl(3)

.login(2)
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                        ch1                         9
                        ch2                         7
                dsaa                               17
                        ch1                         4
                        ch2                         6
                ecp                                11
                        ch1                         3
                        ch2                         8
                ipps                               12
        books                                      41
                        syl                         2
                cop3223                             3
                        syl                         3
                cop3530                             4
        courses                                     8
        .login                                      2
mark                                               52

Trace of the size  method
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Uses of binary trees: left is an expression tree and right is a 
Huffman coding tree

+

a *

- d

a

d

b cb c
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Result of a naive merge  operation

t1.root t2.root

root
X
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Aliasing problems in the merge  operation; T1 is also the 
current object

T2.root

root
X

oldRoot
oldT1.Root

T1.root
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Recursive view used to calculate the size of a tree: 
ST = SL + SR + 1

SL SR
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Recursive view of node height calculation: 
HT = max( HL+1, HR +1 )

HL

HL+1

HR

HR +1
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Preorder, postorder, and inorder visitation routes

1

2 3

4 6

75

7

1 6

3 5

42

2

1 5

3 7

64
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Stack states during postorder traversal

a 0
b 0
a 1

b 1
a 1

d 0
b 2
a 1

d 1
b 2
a 1

d 2
b 2
a 1

b 2
a 1

d

a 1

b

c  0
a 2

e 0
c  1
a 2

e 1
c  1
a 2

e 2
c  1
a 2

c  1
a 2

e

c  2
a 2 a 2

c a

a

b c

ed
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Chapter 18

Binary Search Trees
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Two binary trees (only the left tree is a search tree)

2 9

1 5

3

2 9

1 5

3 8

7 7
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Binary search trees before and after inserting 6

2 9

1 5

3

7

2 9

1 5

3 6

7
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Deletion of node 5 with one child, before and after

7

2 9

1 5

3

7

2 9

1

3
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Deletion of node 2 with two children, before and after

7

2 9

1 5

3

7

3 9

1

4

5

4
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Using the size  data field to implement findKth

X X X

SL SL SL SRSRSR

K < SL + 1 K == SL + 1 K > SL + 1
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Balanced tree on the left has a depth of log N; unbalanced 
tree on the right has a depth of N–1
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Binary search trees that can result from inserting a permu-
tation 1, 2, and 3; the balanced tree in the middle is twice 
as likely as any other

33

12

21

32

3

1

3

2

211
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Two binary search trees: the left tree is an AVL tree, but 
the right tree is not (unbalanced nodes are darkened)

12

8 16

4 10 14

2 6

12

8 16

4 10 14

2 6

1
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Minimum tree of height H

H–1

H

H–2
SH–1 SH–2
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Single rotation to fix case 1

k2

k1

k1

k2

A

B

C

A B C
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Single rotation fixes AVL tree after insertion of 1

8 16

4 10 14

2 6

4 16

2 8 14

1 6 10

k2

k1

A B

C

1

A

B C

k2

k1

1212
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Symmetric single rotation to fix case 4

k2

k1

k1

k2

A B C

A

B

C
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Single rotation does not fix case 2

k2

k1 k2

P

Q

R P

Q

R

k1
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Left-right double rotation to fix case 2

k3

k1

k2

k1 k3

A
B C

D

A
B C

D

k2
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Double rotation fixes AVL tree after insertion of 5

8 16

4 10 14

2 6

6 16

4 8 14

2 105

k3

k1

A

D

5

A C D

k3

k2

C

k2 B

k1

12

B

12
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Left-right double rotation to fix case 3

k1

k3

k2

A

B C
D A

B C
D

k3k1

k2
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A red-black tree is a binary search tree with the following ordering properties:

1. Every node is colored either red or black.
2. The root is black.
3. If a node is red, its children must be black.
4. Every path from a node to a null  reference must contain the same number 

of black nodes.

Red-black tree properties
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Example of a red-black tree; insertion sequence is 10, 85, 
15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55)

15

10 20

70

60 85

65 80 90

40 55

30

5 50
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If S is black, then a single rotation between the parent and 
grandparent, with appropriate color changes, restores 
property 3 if X is an outside grandchild

B

C D E

A

A B C

D E

SP

X

G

X G

S

P



Copyright  1998 by Addison-Wesley Publishing Company 199

If S is black, then a double rotation involving X, the parent, 
and the grandparent, with appropriate color changes, 
restores property 3 if X is an inside grandchild

P S

XA D E A B C

B C D E

G X

P G

S
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If S is red, then a single rotation between the parent and 
grandparent, with appropriate color changes, restores 
property 3 between X and P

P S

X

B

C D E

A

A B C

D E

G

X G

P

S



Copyright  1998 by Addison-Wesley Publishing Company 201

Color flip; only if X’s parent is red do we continue with a 
rotation

C1 C2

X

C1 C2

X
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Color flip at 50 induces a violation; because it is outside, a 
single rotation fixes it

15

10 20

70

60 85

65 80 90

40 55

30

5 50
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Result of single rotation that fixes violation at node 50

15

10 20

60

50 70

55 65 85

80 90

30

5 40
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Insertion of 45 as a red node

15

10 20

60

50 70

55 65 85

80 9045

30

5 40
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Deletion: X has two black children, and both of its sibling’s 
children are black; do a color flip

X T X T

P P
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Deletion: X has two black children, and the outer child of its 
sibling is red; do a single rotation

P T

X T P R

R X
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Deletion: X has two black children, and the inner child of its 
sibling is red; do a double rotation

P R

X T P T

R X
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X is black and at least one child is red; if we fall through to 
next level and land on a red child, everything is good; if not, 
we rotate a sibling and parent

B C B C B

TX P

TX' P C

X'
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The level of a node is 

• One if the node is a leaf
• The level of its parent, if the node is red
• One less than the level of its parent, if the node is black

1. Horizontal links are right pointers (because only right children may be red).
2. There may not be two consecutive horizontal links (because there cannot be 

consecutive red nodes).
3. Nodes at level 2 or higher must have two children.
4. If a node does not have a right horizontal link, then its two children are at the 

same level.

AA-tree properties
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AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60, 
30, 50, 65, 80, 90, 40, 5, 55, 35

5 10

15

20 35 40 55 65 80 90

30 70

60 8550
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skew  is a simple rotation between X and P

A B C

P X

A B C

P X
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split  is a simple rotation between X and R; note that 
R’s level increases

A B

X R

A B

XG G

R
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After inserting 45 into sample tree; consecutive horizontal 
links are introduced starting at 35

After split  at 35; introduces a left horizontal link at 50

After skew  at 50; introduces consecutive horizontal nodes 
starting at 40

5 10 20 35 40 55 65 80 9045

30 70

50 6015 85

5 10 20 35 55 65 80 90

50

45

85604015

30 70

5 10 20 35 55 65 80 90

30

45

70

60 8515 40 50
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After split  at 40; 50 is now on the same level as 70, 
thus inducing an illegal left horizontal link

After skew  at 70; this introduces consecutive horizontal 
links at 30

After split  at 30; insertion is complete

5 10 20 35 55 65 80 9045

50

15 40 60 85

30 70

5 10 20 35 55 65 80 9045

15 40 60 85

30 50 70

5 10 20 35 55 65 80 9045

15 40 60 85

30 70

50
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When 1 is deleted, all nodes become level 1, introducing 
horizontal left links

3 4 6 71

2 5
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Five-ary tree of 31 nodes has only three levels
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B-tree of order 5

41 66 87

92 9772 78 8348 51 548 18 26 35

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

31

32

35

36

37

38

39

41

42

44

46

48

49

50

51

52

53

54

56

58

83

84

85

78

79

81

72

73

74

76

66

68

69

70

97

98

99

92

93

95

87

89

90

59
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A B-tree of order M is an M-ary tree with the following properties:

1. The data items are stored at leaves.
2. The nonleaf nodes store up to  keys to guide the searching; key i repre-

sents the smallest key in subtree .
3. The root is either a leaf or has between 2 and M children.
4. All nonleaf nodes (except the root) have between  and M children.
5. All leaves are at the same depth and have between  and L children, 

for some L.

B-tree properties

M 1–
i 1+

M 2⁄
L 2⁄
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B-tree after insertion of 57 into tree in Figure 18.70

41 66 87

92 9772 78 8348 51 548 18 26 35

2

4
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10

12

14

16
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38

39

41

42

44
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83
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85

78
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74

76
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68

69
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93

95

87

89

90
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59
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Insertion of 55 in B-tree in Figure 18.71 causes a split into 
two leaves

41 66 87

92 9772 78 8348 51 54 578 18 26 35
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Insertion of 40 in B-tree in Figure 18.72 causes a split into 
two leaves and then a split of the parent node

26 41 66 87

92 9772 78 8348 51 54 5735 38

26
28
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32

35
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48
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55
56

83
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78
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72
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8 18
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14
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24
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B-tree after deletion of 99 from Figure 18.73

26 41 66 83

87 9272 7848 51 54 5735 38
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