
Copyright  1998 by Addison-Wesley Publishing Company 147

Chapter 15

Stacks and Queues



Copyright  1998 by Addison-Wesley Publishing Company 148

How the stack routines work: empty stack, push(A) , 
push(B) , pop

tos (0)

tos (1)

tos (0)

tos (-1)

A A A

B



Copyright  1998 by Addison-Wesley Publishing Company 149

Basic array implementation of the queue

front

front

front

front

front

back

back

back

back

back

A

A B

B

size = 0

size = 1

size = 2

size = 1

size = 0

makeEmpty( )

enqueue(A)

enqueue(B)

dequeue( )

dequeue( )



Copyright  1998 by Addison-Wesley Publishing Company 150

Array implementation of the queue with wraparound

front

front

front

front

front

back

back

back

back

back

F

F

E

size = 3

size = 4

size = 3

size = 2

size = 1

After 3 enqueues

enqueue(F)

dequeue( )

dequeue( )

dequeue( )

F

F

D E

C D E

C D E



Copyright  1998 by Addison-Wesley Publishing Company 151

Linked list implementation of the stack

ABCD

topOfStack



Copyright  1998 by Addison-Wesley Publishing Company 152

Linked list implementation of the queue

A B C D

front back



Copyright  1998 by Addison-Wesley Publishing Company 153

enqueue  operation for linked-list-based implementation

back

X

back

...

...

Before

After



Copyright  1998 by Addison-Wesley Publishing Company 154

Chapter 16

Linked Lists



Copyright  1998 by Addison-Wesley Publishing Company 155

Basic linked list

A B C D

frontOfList



Copyright  1998 by Addison-Wesley Publishing Company 156

Insertion into a linked list: create new node (tmp ), copy in 
x , set tmp ’s next  reference, set current ’s next  
reference

current

... ...

x

A B

tmp



Copyright  1998 by Addison-Wesley Publishing Company 157

Deletion from a linked list

current

... ...
XA B



Copyright  1998 by Addison-Wesley Publishing Company 158

Using a header node for the linked list

A B C

header



Copyright  1998 by Addison-Wesley Publishing Company 159

Empty list when header node is used

header



Copyright  1998 by Addison-Wesley Publishing Company 160

Doubly linked list

head tail

A B



Copyright  1998 by Addison-Wesley Publishing Company 161

Empty doubly linked list

head tail



Copyright  1998 by Addison-Wesley Publishing Company 162

Insertion into a doubly linked list by getting new node and 
then changing references in order indicated

... ...A B

X
a b
c d



Copyright  1998 by Addison-Wesley Publishing Company 163

Circular doubly linked list

first

A B C D



Copyright  1998 by Addison-Wesley Publishing Company 164

Chapter 17

Trees



Copyright  1998 by Addison-Wesley Publishing Company 165

A tree

A

B C D E

F G H I J

K



Copyright  1998 by Addison-Wesley Publishing Company 166

Tree viewed recursively

...

root

T1 T2 T3 Tk



Copyright  1998 by Addison-Wesley Publishing Company 167

First child/next sibling representation of tree in Figure 17.1

A

B C D E

F G H I J

K



Copyright  1998 by Addison-Wesley Publishing Company 168

Unix directory

mark*

books* courses*

ecp*dsaa* ipps*

ch1 ch2 ch1 ch2 ch2ch1

cop3223* cop3530*

syl syl

.login



Copyright  1998 by Addison-Wesley Publishing Company 169

mark
        books
                dsaa
                        ch1
                        ch2
                ecp
                        ch1
                        ch2
                ipps
                        ch1
                        ch2
        courses
                cop3223
                        syl
                cop3530
                        syl
        .login

The directory listing for tree in Figure 17.4



Copyright  1998 by Addison-Wesley Publishing Company 170

Unix directory with file sizes

mark*(1)

books*(1) courses*(1)

ecp*(1)dsaa*(1) ipps*(1)

ch1(9) ch2(7) ch1(4) ch2(6) ch2(8)ch1(3)

cop3223*(1) cop3530*(1)

syl(2) syl(3)

.login(2)



Copyright  1998 by Addison-Wesley Publishing Company 171

                        ch1                         9
                        ch2                         7
                dsaa                               17
                        ch1                         4
                        ch2                         6
                ecp                                11
                        ch1                         3
                        ch2                         8
                ipps                               12
        books                                      41
                        syl                         2
                cop3223                             3
                        syl                         3
                cop3530                             4
        courses                                     8
        .login                                      2
mark                                               52

Trace of the size  method



Copyright  1998 by Addison-Wesley Publishing Company 172

Uses of binary trees: left is an expression tree and right is a 
Huffman coding tree

+

a *

- d

a

d

b cb c



Copyright  1998 by Addison-Wesley Publishing Company 173

Result of a naive merge  operation

t1.root t2.root

root
X



Copyright  1998 by Addison-Wesley Publishing Company 174

Aliasing problems in the merge  operation; T1 is also the 
current object

T2.root

root
X

oldRoot
oldT1.Root

T1.root



Copyright  1998 by Addison-Wesley Publishing Company 175

Recursive view used to calculate the size of a tree: 
ST = SL + SR + 1

SL SR



Copyright  1998 by Addison-Wesley Publishing Company 176

Recursive view of node height calculation: 
HT = max( HL+1, HR +1 )

HL

HL+1

HR

HR +1



Copyright  1998 by Addison-Wesley Publishing Company 177

Preorder, postorder, and inorder visitation routes

1

2 3

4 6

75

7

1 6

3 5

42

2

1 5

3 7

64



Copyright  1998 by Addison-Wesley Publishing Company 178

Stack states during postorder traversal

a 0
b 0
a 1

b 1
a 1

d 0
b 2
a 1

d 1
b 2
a 1

d 2
b 2
a 1

b 2
a 1

d

a 1

b

c  0
a 2

e 0
c  1
a 2

e 1
c  1
a 2

e 2
c  1
a 2

c  1
a 2

e

c  2
a 2 a 2

c a

a

b c

ed



Copyright  1998 by Addison-Wesley Publishing Company 179

Chapter 18

Binary Search Trees



Copyright  1998 by Addison-Wesley Publishing Company 180

Two binary trees (only the left tree is a search tree)

2 9

1 5

3

2 9

1 5

3 8

7 7



Copyright  1998 by Addison-Wesley Publishing Company 181

Binary search trees before and after inserting 6

2 9

1 5

3

7

2 9

1 5

3 6

7



Copyright  1998 by Addison-Wesley Publishing Company 182

Deletion of node 5 with one child, before and after

7

2 9

1 5

3

7

2 9

1

3



Copyright  1998 by Addison-Wesley Publishing Company 183

Deletion of node 2 with two children, before and after

7

2 9

1 5

3

7

3 9

1

4

5

4



Copyright  1998 by Addison-Wesley Publishing Company 184

Using the size  data field to implement findKth

X X X

SL SL SL SRSRSR

K < SL + 1 K == SL + 1 K > SL + 1



Copyright  1998 by Addison-Wesley Publishing Company 185

Balanced tree on the left has a depth of log N; unbalanced 
tree on the right has a depth of N–1



Copyright  1998 by Addison-Wesley Publishing Company 186

Binary search trees that can result from inserting a permu-
tation 1, 2, and 3; the balanced tree in the middle is twice 
as likely as any other

33

12

21

32

3

1

3

2

211



Copyright  1998 by Addison-Wesley Publishing Company 187

Two binary search trees: the left tree is an AVL tree, but 
the right tree is not (unbalanced nodes are darkened)

12

8 16

4 10 14

2 6

12

8 16

4 10 14

2 6

1



Copyright  1998 by Addison-Wesley Publishing Company 188

Minimum tree of height H

H–1

H

H–2
SH–1 SH–2



Copyright  1998 by Addison-Wesley Publishing Company 189

Single rotation to fix case 1

k2

k1

k1

k2

A

B

C

A B C



Copyright  1998 by Addison-Wesley Publishing Company 190

Single rotation fixes AVL tree after insertion of 1

8 16

4 10 14

2 6

4 16

2 8 14

1 6 10

k2

k1

A B

C

1

A

B C

k2

k1

1212



Copyright  1998 by Addison-Wesley Publishing Company 191

Symmetric single rotation to fix case 4

k2

k1

k1

k2

A B C

A

B

C



Copyright  1998 by Addison-Wesley Publishing Company 192

Single rotation does not fix case 2

k2

k1 k2

P

Q

R P

Q

R

k1



Copyright  1998 by Addison-Wesley Publishing Company 193

Left-right double rotation to fix case 2

k3

k1

k2

k1 k3

A
B C

D

A
B C

D

k2



Copyright  1998 by Addison-Wesley Publishing Company 194

Double rotation fixes AVL tree after insertion of 5

8 16

4 10 14

2 6

6 16

4 8 14

2 105

k3

k1

A

D

5

A C D

k3

k2

C

k2 B

k1

12

B

12



Copyright  1998 by Addison-Wesley Publishing Company 195

Left-right double rotation to fix case 3

k1

k3

k2

A

B C
D A

B C
D

k3k1

k2



Copyright  1998 by Addison-Wesley Publishing Company 196

A red-black tree is a binary search tree with the following ordering properties:

1. Every node is colored either red or black.
2. The root is black.
3. If a node is red, its children must be black.
4. Every path from a node to a null  reference must contain the same number 

of black nodes.

Red-black tree properties



Copyright  1998 by Addison-Wesley Publishing Company 197

Example of a red-black tree; insertion sequence is 10, 85, 
15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55)

15

10 20

70

60 85

65 80 90

40 55

30

5 50



Copyright  1998 by Addison-Wesley Publishing Company 198

If S is black, then a single rotation between the parent and 
grandparent, with appropriate color changes, restores 
property 3 if X is an outside grandchild

B

C D E

A

A B C

D E

SP

X

G

X G

S

P



Copyright  1998 by Addison-Wesley Publishing Company 199

If S is black, then a double rotation involving X, the parent, 
and the grandparent, with appropriate color changes, 
restores property 3 if X is an inside grandchild

P S

XA D E A B C

B C D E

G X

P G

S



Copyright  1998 by Addison-Wesley Publishing Company 200

If S is red, then a single rotation between the parent and 
grandparent, with appropriate color changes, restores 
property 3 between X and P

P S

X

B

C D E

A

A B C

D E

G

X G

P

S



Copyright  1998 by Addison-Wesley Publishing Company 201

Color flip; only if X’s parent is red do we continue with a 
rotation

C1 C2

X

C1 C2

X



Copyright  1998 by Addison-Wesley Publishing Company 202

Color flip at 50 induces a violation; because it is outside, a 
single rotation fixes it

15

10 20

70

60 85

65 80 90

40 55

30

5 50



Copyright  1998 by Addison-Wesley Publishing Company 203

Result of single rotation that fixes violation at node 50

15

10 20

60

50 70

55 65 85

80 90

30

5 40



Copyright  1998 by Addison-Wesley Publishing Company 204

Insertion of 45 as a red node

15

10 20

60

50 70

55 65 85

80 9045

30

5 40



Copyright  1998 by Addison-Wesley Publishing Company 205

Deletion: X has two black children, and both of its sibling’s 
children are black; do a color flip

X T X T

P P



Copyright  1998 by Addison-Wesley Publishing Company 206

Deletion: X has two black children, and the outer child of its 
sibling is red; do a single rotation

P T

X T P R

R X



Copyright  1998 by Addison-Wesley Publishing Company 207

Deletion: X has two black children, and the inner child of its 
sibling is red; do a double rotation

P R

X T P T

R X



Copyright  1998 by Addison-Wesley Publishing Company 208

X is black and at least one child is red; if we fall through to 
next level and land on a red child, everything is good; if not, 
we rotate a sibling and parent

B C B C B

TX P

TX' P C

X'



Copyright  1998 by Addison-Wesley Publishing Company 209

The level of a node is 

• One if the node is a leaf
• The level of its parent, if the node is red
• One less than the level of its parent, if the node is black

1. Horizontal links are right pointers (because only right children may be red).
2. There may not be two consecutive horizontal links (because there cannot be 

consecutive red nodes).
3. Nodes at level 2 or higher must have two children.
4. If a node does not have a right horizontal link, then its two children are at the 

same level.

AA-tree properties



Copyright  1998 by Addison-Wesley Publishing Company 210

AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60, 
30, 50, 65, 80, 90, 40, 5, 55, 35

5 10

15

20 35 40 55 65 80 90

30 70

60 8550



Copyright  1998 by Addison-Wesley Publishing Company 211

skew  is a simple rotation between X and P

A B C

P X

A B C

P X



Copyright  1998 by Addison-Wesley Publishing Company 212

split  is a simple rotation between X and R; note that 
R’s level increases

A B

X R

A B

XG G

R



Copyright  1998 by Addison-Wesley Publishing Company 213

After inserting 45 into sample tree; consecutive horizontal 
links are introduced starting at 35

After split  at 35; introduces a left horizontal link at 50

After skew  at 50; introduces consecutive horizontal nodes 
starting at 40

5 10 20 35 40 55 65 80 9045

30 70

50 6015 85

5 10 20 35 55 65 80 90

50

45

85604015

30 70

5 10 20 35 55 65 80 90

30

45

70

60 8515 40 50



Copyright  1998 by Addison-Wesley Publishing Company 214

After split  at 40; 50 is now on the same level as 70, 
thus inducing an illegal left horizontal link

After skew  at 70; this introduces consecutive horizontal 
links at 30

After split  at 30; insertion is complete

5 10 20 35 55 65 80 9045

50

15 40 60 85

30 70

5 10 20 35 55 65 80 9045

15 40 60 85

30 50 70

5 10 20 35 55 65 80 9045

15 40 60 85

30 70

50



Copyright  1998 by Addison-Wesley Publishing Company 215

When 1 is deleted, all nodes become level 1, introducing 
horizontal left links

3 4 6 71

2 5



Copyright  1998 by Addison-Wesley Publishing Company 216

Five-ary tree of 31 nodes has only three levels



Copyright  1998 by Addison-Wesley Publishing Company 217

B-tree of order 5

41 66 87

92 9772 78 8348 51 548 18 26 35

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

31

32

35

36

37

38

39

41

42

44

46

48

49

50

51

52

53

54

56

58

83

84

85

78

79

81

72

73

74

76

66

68

69

70

97

98

99

92

93

95

87

89

90

59



Copyright  1998 by Addison-Wesley Publishing Company 218

A B-tree of order M is an M-ary tree with the following properties:

1. The data items are stored at leaves.
2. The nonleaf nodes store up to  keys to guide the searching; key i repre-

sents the smallest key in subtree .
3. The root is either a leaf or has between 2 and M children.
4. All nonleaf nodes (except the root) have between  and M children.
5. All leaves are at the same depth and have between  and L children, 

for some L.

B-tree properties

M 1–
i 1+

M 2⁄
L 2⁄



Copyright  1998 by Addison-Wesley Publishing Company 219

B-tree after insertion of 57 into tree in Figure 18.70

41 66 87

92 9772 78 8348 51 548 18 26 35

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

31

32

35

36

37

38

39

41

42

44

46

48

49

50

51

52

53

54

56

57

83

84

85

78

79

81

72

73

74

76

66

68

69

70

97

98

99

92

93

95

87

89

90

58

59



Copyright  1998 by Addison-Wesley Publishing Company 220

Insertion of 55 in B-tree in Figure 18.71 causes a split into 
two leaves

41 66 87

92 9772 78 8348 51 54 578 18 26 35

2
4
6

8
10
12
14
16

18
20
22
24

26
28
30
31
32

35
36
37
38
39

41
42
44
46

48
49
50

51
52
53

54
55
56

83
84
85

78
79
81

72
73
74
76

66
68
69
70

97
98
99

92
93
95

87
89
90

57
58
59



Copyright  1998 by Addison-Wesley Publishing Company 221

Insertion of 40 in B-tree in Figure 18.72 causes a split into 
two leaves and then a split of the parent node

26 41 66 87

92 9772 78 8348 51 54 5735 38

26
28
30
31
32

35
36
37

38
39
40

41
42
44
46

48
49
50

51
52
53

54
55
56

83
84
85

78
79
81

72
73
74
76

66
68
69
70

97
98
99

92
93
95

87
89
90

57
58
59

8 18

2
4
6

8
10
12
14
16

18
20
22
24



Copyright  1998 by Addison-Wesley Publishing Company 222

B-tree after deletion of 99 from Figure 18.73

26 41 66 83

87 9272 7848 51 54 5735 38

26

28

30

31

32

35

36

37

38

39

40

41

42

44

46

48

49

50

51

52

53

54

55

56

78

79

81

72

73

74

76

66

68

69

70

92

93

95

97

98

87

89

90

83

84

85

57

58

59

8 18

2

4

6

8

10

12

14

16

18

20

22

24


