Chapter 15

Stacks and Queues
How the stack routines work: empty stack, \texttt{push(A)}, \texttt{push(B)}, \texttt{pop}
Basic array implementation of the queue
Array implementation of the queue with wraparound
Linked list implementation of the stack
Linked list implementation of the queue
enqueue operation for linked-list-based implementation
Chapter 16

Linked Lists
Basic linked list
Insertion into a linked list: create new node (tmp), copy in x, set tmp’s next reference, set current’s next reference
Deletion from a linked list
Using a header node for the linked list
Empty list when header node is used
Doubly linked list
Empty doubly linked list
Insertion into a doubly linked list by getting new node and then changing references in order indicated
Circular doubly linked list
Chapter 17

Trees
A tree
Tree viewed recursively
First child/next sibling representation of tree in Figure 17.1
Unix directory
The directory listing for tree in Figure 17.4
Unix directory with file sizes
Trace of the size method
Uses of binary trees: left is an expression tree and right is a Huffman coding tree
Result of a naive merge operation
Aliasing problems in the `merge` operation; T1 is also the current object
Recursive view used to calculate the size of a tree:

\[S_T = S_L + S_R + 1 \]
Recursive view of node height calculation:

\[H_T = \max(H_L + 1, H_R + 1) \]
Preorder, postorder, and inorder visitation routes
Stack states during postorder traversal
Chapter 18

Binary Search Trees
Two binary trees (only the left tree is a search tree)
Binary search trees before and after inserting 6
Deletion of node 5 with one child, before and after
Deletion of node 2 with two children, before and after
Using the size data field to implement \texttt{findKth}
Balanced tree on the left has a depth of $\log N$; unbalanced tree on the right has a depth of $N-1$
Binary search trees that can result from inserting a permutation 1, 2, and 3; the balanced tree in the middle is twice as likely as any other.
Two binary search trees: the left tree is an AVL tree, but the right tree is not (unbalanced nodes are darkened)
Minimum tree of height H
Single rotation to fix case 1
Single rotation fixes AVL tree after insertion of 1
Symmetric single rotation to fix case 4
Single rotation does not fix case 2
Left-right double rotation to fix case 2
Double rotation fixes AVL tree after insertion of 5
Left-right double rotation to fix case 3
A red-black tree is a binary search tree with the following ordering properties:

1. Every node is colored either red or black.
2. The root is black.
3. If a node is red, its children must be black.
4. Every path from a node to a null reference must contain the same number of black nodes.

Red-black tree properties
Example of a red-black tree; insertion sequence is 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55)
If S is black, then a single rotation between the parent and grandparent, with appropriate color changes, restores property 3 if X is an outside grandchild.
If S is black, then a double rotation involving X, the parent, and the grandparent, with appropriate color changes, restores property 3 if X is an inside grandchild.
If S is red, then a single rotation between the parent and grandparent, with appropriate color changes, restores property 3 between X and P.
Color flip; only if X’s parent is red do we continue with a rotation
Color flip at 50 induces a violation; because it is outside, a single rotation fixes it
Result of single rotation that fixes violation at node 50
Insertion of 45 as a red node
Deletion: X has two black children, and both of its sibling’s children are black; do a color flip
Deletion: X has two black children, and the outer child of its sibling is red; do a single rotation
Deletion: X has two black children, and the inner child of its sibling is red; do a double rotation
X is black and at least one child is red; if we fall through to next level and land on a red child, everything is good; if not, we rotate a sibling and parent
The level of a node is

- One if the node is a leaf
- The level of its parent, if the node is red
- One less than the level of its parent, if the node is black

1. Horizontal links are right pointers (because only right children may be red).
2. There may not be two consecutive horizontal links (because there cannot be consecutive red nodes).
3. Nodes at level 2 or higher must have two children.
4. If a node does not have a right horizontal link, then its two children are at the same level.

AA-tree properties
AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55, 35
skew is a simple rotation between X and P
split is a simple rotation between X and R; note that R’s level increases
After inserting 45 into sample tree; consecutive horizontal links are introduced starting at 35

After split at 35; introduces a left horizontal link at 50

After skew at 50; introduces consecutive horizontal nodes starting at 40
After split at 40; 50 is now on the same level as 70, thus inducing an illegal left horizontal link

After skew at 70; this introduces consecutive horizontal links at 30

After split at 30; insertion is complete
When 1 is deleted, all nodes become level 1, introducing horizontal left links
Five-ary tree of 31 nodes has only three levels
B-tree of order 5
A B-tree of order M is an M-ary tree with the following properties:

1. The data items are stored at leaves.
2. The nonleaf nodes store up to $M - 1$ keys to guide the searching; key i represents the smallest key in subtree $i + 1$.
3. The root is either a leaf or has between 2 and M children.
4. All nonleaf nodes (except the root) have between $\lceil M/2 \rceil$ and M children.
5. All leaves are at the same depth and have between $\lceil L/2 \rceil$ and L children, for some L.

B-tree properties
B-tree after insertion of 57 into tree in Figure 18.70
Insertion of 55 in B-tree in Figure 18.71 causes a split into two leaves.
Insertion of 40 in B-tree in Figure 18.72 causes a split into two leaves and then a split of the parent node.
B-tree after deletion of 99 from Figure 18.73