package weiss.nonstandard; // SplayTree class // // CONSTRUCTION: with no initializer // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // void remove( x ) --> Remove x // Comparable find( x ) --> Return item that matches x // Comparable findMin( ) --> Return smallest item // Comparable findMax( ) --> Return largest item // boolean isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // ******************ERRORS******************************** // Exceptions are thrown by insert and remove if warranted /** * Implements a top-down splay tree. * Note that all "matching" is based on the compareTo method. * @author Mark Allen Weiss */ public class SplayTree { /** * Construct the tree. */ public SplayTree( ) { root = nullNode; } private static BinaryNode newNode = null; // Used between different inserts /** * Insert into the tree. * @param x the item to insert. * @throws DuplicateItemException if x is already present. */ public void insert( Comparable x ) { if( newNode == null ) newNode = new BinaryNode( null ); newNode.element = x; if( root == nullNode ) { newNode.left = newNode.right = nullNode; root = newNode; } else { root = splay( x, root ); if( x.compareTo( root.element ) < 0 ) { newNode.left = root.left; newNode.right = root; root.left = nullNode; root = newNode; } else if( x.compareTo( root.element ) > 0 ) { newNode.right = root.right; newNode.left = root; root.right = nullNode; root = newNode; } else throw new DuplicateItemException( x.toString( ) ); } newNode = null; // So next insert will call new } /** * Remove from the tree. * @param x the item to remove. * @throws ItemNotFoundException if x is not found. */ public void remove( Comparable x ) { BinaryNode newTree; // If x is found, it will be at the root root = splay( x, root ); if( root.element.compareTo( x ) != 0 ) throw new ItemNotFoundException( x.toString( ) ); if( root.left == nullNode ) newTree = root.right; else { // Find the maximum in the left subtree // Splay it to the root; and then attach right child newTree = root.left; newTree = splay( x, newTree ); newTree.right = root.right; } root = newTree; } /** * Find the smallest item in the tree. * Not the most efficient implementation (uses two passes), but has correct * amortized behavior. * A good alternative is to first call find with parameter * smaller than any item in the tree, then call findMin. * @return the smallest item or null if empty. */ public Comparable findMin( ) { if( isEmpty( ) ) return null; BinaryNode ptr = root; while( ptr.left != nullNode ) ptr = ptr.left; root = splay( ptr.element, root ); return ptr.element; } /** * Find the largest item in the tree. * Not the most efficient implementation (uses two passes), but has correct * amortized behavior. * A good alternative is to first call find with parameter * larger than any item in the tree, then call findMax. * @return the largest item or null if empty. */ public Comparable findMax( ) { if( isEmpty( ) ) return null; BinaryNode ptr = root; while( ptr.right != nullNode ) ptr = ptr.right; root = splay( ptr.element, root ); return ptr.element; } /** * Find an item in the tree. * @param x the item to search for. * @return the matching item or null if not found. */ public Comparable find( Comparable x ) { root = splay( x, root ); if( isEmpty( ) || root.element.compareTo( x ) != 0 ) return null; return root.element; } /** * Make the tree logically empty. */ public void makeEmpty( ) { root = nullNode; } /** * Test if the tree is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return root == nullNode; } private static BinaryNode header = new BinaryNode( null ); // For splay /** * Internal method to perform a top-down splay. * The last accessed node becomes the new root. * @param x the target item to splay around. * @param t the root of the subtree to splay. * @return the subtree after the splay. */ private BinaryNode splay( Comparable x, BinaryNode t ) { BinaryNode leftTreeMax, rightTreeMin; header.left = header.right = nullNode; leftTreeMax = rightTreeMin = header; nullNode.element = x; // Guarantee a match for( ; ; ) if( x.compareTo( t.element ) < 0 ) { if( x.compareTo( t.left.element ) < 0 ) t = Rotations.rotateWithLeftChild( t ); if( t.left == nullNode ) break; // Link Right rightTreeMin.left = t; rightTreeMin = t; t = t.left; } else if( x.compareTo( t.element ) > 0 ) { if( x.compareTo( t.right.element ) > 0 ) t = Rotations.rotateWithRightChild( t ); if( t.right == nullNode ) break; // Link Left leftTreeMax.right = t; leftTreeMax = t; t = t.right; } else break; leftTreeMax.right = t.left; rightTreeMin.left = t.right; t.left = header.right; t.right = header.left; return t; } private BinaryNode root; private static BinaryNode nullNode; static // Static initializer for nullNode { nullNode = new BinaryNode( null ); nullNode.left = nullNode.right = nullNode; } // Test program; should print min and max and nothing else public static void main( String [ ] args ) { SplayTree t = new SplayTree( ); final int NUMS = 40000; final int GAP = 307; System.out.println( "Checking... (no bad output means success)" ); for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS ) t.insert( new Integer( i ) ); System.out.println( "Inserts complete" ); for( int i = 1; i < NUMS; i+= 2 ) t.remove( new Integer( i ) ); System.out.println( "Removes complete" ); if( ((Integer)(t.findMin( ))).intValue( ) != 2 || ((Integer)(t.findMax( ))).intValue( ) != NUMS - 2 ) System.out.println( "FindMin or FindMax error!" ); for( int i = 2; i < NUMS; i+=2 ) if( ((Integer)t.find( new Integer( i ) )).intValue( ) != i ) System.out.println( "Error: find fails for " + i ); for( int i = 1; i < NUMS; i+=2 ) if( t.find( new Integer( i ) ) != null ) System.out.println( "Error: Found deleted item " + i ); } }