Support for Data-Intensive, Variable-Granularity Grid Applications via Distributed File System Virtualization: A Case Study of Light Scattering Spectroscopy

Jithendar Paladugula, Ming Zhao, Renato Figueiredo

Advanced Computing and Information Systems Electrical and Computer Engineering University of Florida

Overview

- **Goal**: Support for large-scale, distributed biomedical applications on computational Grids
 - Network/Grid computing model
 - Data access at variable granularities

Overview

- Challenge: High performance and seamless data management
- Contribution: The integration of Light Scattering Spectroscopy (LSS) analysis with Grid Virtual File System (GVFS)

Outline

- Background
- Implementation
- Evaluations
- Summary

Light Scattering Spectroscopy (LSS) ^{[1][2]}

- Probes the structure of living cells without tissue removal
- Helps in non-invasive detection of precancerous changes in human epithelium

LSS Analysis

- Obtains parameters (size and refractive index) from spectrum
- Approximated using lookup on Mie-theory spectra database
- High accuracy => large database, intensive computation

Database Generation

- Databases of LSS spectra over a range of diameters, diameter deviations, refractive indices are generated.
- The Mie function output file is normalized and appended as a record to the database.

Database Generation in Parallel

8

LSS Analysis in Parallel

Parallelized across Image File database records Name Large database size D,DD,RF Database Fit into cache Node 1 **Directory Path** DB1 MPI for coordination Master-slave strategy File system I/O for access of databases Simplifies Node 2 Node 3 Node n-1 Node n programming **Exploits GVFS** D – Diameter, DD – Diameter Deviation, RF – Refractive Index, E – Error, DB - Database support

Integration with Grids

10

Grid Virtual File System (GVFS)

- Logical user accounts ^[3] and Virtual file system ^[4]
 - NFS call forwarding via middle tier user-level proxy
 - On-demand, partial, user-transparent data transfer
- Performance: client-side proxy disk caching
- Security: SSH tunneling of RPC connections and cross-domain session-key based authentication

Advanced Computing and Information Systems laboratory

GVFS Support for LSS

- File I/O across wide area environment
 - Simplifies programming, reduces communications
 - User transparent, cross-domain data access
- Network latency hiding by disk caching
 - Exploits temporal locality of databases across LSS runs
 - Employs write-back to hide write latency and avoids transfer of temporary data

GVFS Support for LSS

- On-demand data access at variable granularity
 - Fast response: sampling down databases
 - High accuracy: large databases
- Private data access via encrypted data channels
 - SSH tunneling
 - Inter-proxy session-key authentication

Integration with Grids

14

Database Generation Results

Speedup plot for parallel database generation

- Databases are stored in Local disk, LAN and WAN data servers
- Proxy disk cache is disabled (WAN), or enabled with write-back policy (WAN+Cache)

LSS Analysis Results

Speedup plot for parallel LSS analysis

- Databases are stored in Local disk, LAN and WAN data servers
- Proxy disk cache is disabled (WAN) or enabled (WAN+Cache)

Variable Granularity

Least-square error, WAN execution time and number of NFS data blocks transfers for database sampling with 16 nodes

Sampling Interval	LSS Error	Time (seconds)	Number of Blocks	
1	2.899	793	14666	
5	2.9	700	14662	
10	2.902	432	6894	
20	2.916	323	3622	
40	2.934	152	1856	

- Low accuracy analysis by sampling down the databases
- A sampling interval of "n" indicates that "n" records are skipped before reading another record in the database

Integration with In-VIGO

In-VIGO ^[5]: Virtualization middleware for computational Grids

Advanced Computing and Information Systems laboratory

Related Work

- GEMSS (Grid Enabled Medical Simulation Services) ^[6]
 - Grid middleware which provides grid services for medical applications
 - Mainly focuses on the computational services for the applications
- ARAMIS (A remote Access Medical Imaging System) ^[7]
 - Provides an object-based user interface
 - ARAMIS propose two levels of network:
 - High-speed, fast-access network to support transport of large volumes of data (between databases and servers)
 - Low bandwidth network for transport between the servers to user's workstation

Conclusions

- A case study for integration of biomedical applications with Grid environments
 - Light Scattering Spectroscopy application deployed in network/Grid computing model
 - Computational/synchronization requirements addressed using MPI
 - Communication requirements are met by the use of Grid Virtual File System
 - Variable granularity
 - Performance

Ongoing and Future Work

- Collaboration with Northwestern University Biomedical Engineering
- Experiments with actual tissue data
- Interface improvements based on user feedback
- Integration with data collection at LSS instruments

References

- 1. Backman V, et al. "Detection of preinvasive cancer cells in situ", *Nature*, 406, 35-36 (2000).
- 2. Backman V, et al, "Imaging human epithelial properties with polarized lightscattering spectroscopy", *Nature Medicine*, 7, 1245-1248 (2001).
- 3. N. Kapadia, R. Figueiredo and J. A. B. Fortes, "Enhancing the Scalability and Usability of Computational Grids via Logical User Accounts and Virtual File Systems", *Proceedings of HCW at IPDPS*, April 2001.
- 4. R. Figueiredo, N. Kapadia and J. A. B. Fortes. "The PUNCH Virtual File System: Seamless Access to Decentralized Storage Services in a Computational Grid", *Proceedings of HPDC*, August 2001.
- 5. S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu. "From Virtualized Resources to Virtual Computing Grids: The In-VIGO System", to appear, *Future Generation Computing Systems* (in press), 04/2004.
- 6. Berti, G., Benker et al, "Medical Simulation Services via the Grid", in *Proceedings of HealthGrid Workshop 2003*, Lyon, France, 2003.
- 7. D. Sarrut and S. Miguet, "ARAMIS: A Remote Access Medical Imaging System", International Symposium on Computing in Object-Oriented Parallel Environments, San Francisco, USA, Dec. 1999.

In-VIGO prototype can be accessed from III V I' http://invigo.acis.ufl.edu; courtesy accounts available. Processing....

UNIVERSITY OF

Experimental Evaluation

- Image
 - Polystyrene beads suspended in water
 - Diameter= 5.8um
 - Diameter Deviation= 0.02um
- Generated databases
 - Diameter : 5.65um to
 5.97um in 0.0005um steps
 - Diameter Deviation : 0.005um to 2.5um in steps of 0.005um
 - Refractive Index (0)
- LSS analysis best fit
 - Diameter= 5.796um
 - Diameter deviation= 0.025um

LSS Image

413.486	1	1.013e-002	
413.743	1	1.127e-002	ğ
413.999	1	1.626e-002	ğ
414.256	1	3.318e-002	e,
414.512	1	1.571e-002	ngl
414.769	1	1.611e-002	g A
415.025	1	2.057e-002	ŝ.
415.282	1	1.622e-002	atte
415.538	1	5.510e-003	śś
415.795	1	1.058e-002	ac
416.052	1	1.501e-002	ш

-5

0

5

450 550 650

Database Format

$ \begin{array}{c} 100 \\ 400 \ 700 \ 1 \\ -5 \ 5 \\ 0 \\ 1 \\ 1.334 \\ 2 \\ \end{array} $		#Represents the number of records in the database #Represents the minimum, maximum and step wavelengths #Represents the minimum and maximum scattering angle #Represents the azimuth angle #Represents the distribution #Represents the refractive index of the medium #Represents the width of data points
5.6	0.02 1.1	#Represents the diameter, diameter deviation and refractive index of the first record
400	0.57	#Represents the various data points for the record
401	0.67	
550	1.00	
699	1.3	
700	0.8	

Computational Requirements

Storage requirements

- Database requires TBytes of storage
 - Diameter : 0.1um to 20um in steps of 0.005um
 - Diameter Deviation :0.1um to 5um in 0.005um steps
 - Refractive Index : 1.02 to 1.1 in steps of 0.0005
- Processing requirements
 - High accuracy analysis requires Peta-order number of operations
- Solution : Parallel computing on workstation clusters using MPI

Execution Times (seconds) for LSS Analysis

	Local Disk	LAN		WAN		WAN +C			
#Proc							2 nd run		
		1 st run	2 nd run	1 st run	2 nd run	1 st run	mount	un-mount	
1	1318	1404	1396	13473	11860	12465	7001	7369	
2	664	735	718	5961	5883	5979	2204	2225	
4	333	432	397	2992	2986	3044	674	1496	
8	172	301	269	1993	1482	1580	228	317	
16	99	234	203	817	755	804	111	183	

27

Execution Times (seconds) for Database Generation

#Proc	Local Disk	LAN		WAN		WAN +C (WT)		WAN + C (WB)
		1 st run	2 nd run	1 st run	2 nd run	1 st run	2 nd run	1 st run
1	8839	8988	8977	22914	22765	22935	22752	9016
2	4417	4491	4488	11693	11550	13002	11776	4493
4	2212	2253	2251	5910	5790	5971	5775	2249
8	1104	1134	1132	2954	2849	2894	2854	1137
16	553	583	576	1685	1595	1503	1445	570

28