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Abstract 
 

This paper proposes an autonomic Grid data 
management architecture based on virtualized 
distributed file systems and WSRF-compliant 
management services. Autonomic functions are 
integrated into the services to provide self-managing 
control over the different entities of Grid-wide file 
system session, in accordance with high-level 
objectives, and operate together to automatically 
achieve the desired data provisioning behaviors. 
Important autonomic features are implemented in this 
system on cache configuration, data replication and 
session redirection. Experiments with the prototype 
demonstrate that this architecture can automatically 
and substantially improve the performance and 
reliability of Grid data access. 
 
1. Introduction 

Computational “Grids” aggregate computing and 
storage resources among multiple institutions to foster 
collaborations through shared access to large volumes 
of data and high-performance machines. Grid data 
management is a challenging task because of the 
heterogeneous, dynamic and large-scale nature of Grid 
environments. In this paper we present a framework 
that enables the implementation of autonomic 
techniques to deal with these challenges, while 
supporting well-known distributed file system 
interfaces for data access. Furthermore, the proposed 
approach requires no modifications to operating 
systems typically employed in Grid resources through 
the use of user-level virtualization techniques. 

The Grid data management framework described in 
this paper is architected to address two important 
questions. First, how to provide data with application-
tailored optimizations? Typically, operating systems 
are designed to support general-purpose applications, 

but it is often the case that “one size does not fit all.” 
To achieve the best performance and reliability for a 
Grid application, data provisioning needs to be 
customized according to the application’s requirements 
and characteristics. 

Because an optimization tailored for one application 
(e.g. aggressive pre-fetching of file contents) may 
result in performance degradation for several others 
(e.g. sparse files, databases), application tailored 
features are typically not implemented in general-
purpose O/S kernels. In addition, kernel-level 
modifications are difficult to port and deploy, notably 
in shared environments. Toolkits based solutions 
typically give users powerful APIs to program remote 
data access with desired behaviors, but few 
programmers are skilled to make effective use of such 
APIs. Instead, our approach provides applications and 
users with a familiar file system interface. 

Second, how to manage data provisioning in 
dynamically changing environments? Customization 
often implies the consideration of various relevant 
factors and tuning of many parameters, in accordance 
with the desired behaviors and the surrounding 
environment. Dynamically changing availability of 
Grid resources further requires continuous monitoring 
of the data provisioning progress and timely 
reconfiguration.  

In a large Grid system, these requirements are 
beyond the capability of end-users and even system 
administrators. Yet the goals of users or administrators 
are rather simple and explicit. From an application 
user’s point of view, it is desired that the job execution 
is fast, responsive and reliable; from a resource 
provider’s point of view, it is desired that the resource 
utilization is healthy and profitable. 

This paper addresses these questions by proposing 
an autonomic Grid data management system based on 
virtualized Grid File Systems (GVFS), and autonomic 
data management services. GVFS employs user-level 
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virtualizations to provide user-transparent Grid data 
access with application-tailored enhancements. 
Autonomic services are designed as self-managing 
elements to control different entities of GVFS sessions 
and operate together to automatically achieve the 
desired data provisioning behaviors for the 
applications. 

 The contributions of this paper are as follows. First, 
we present a novel autonomic Grid data management 
framework upon which automatic monitoring, 
configuring, optimizing and healing of application-
tailored Grid data provisioning can be achieved 
according to high-level objectives, and hence reduce 
management complexity and human intervention. 
Second, based on this framework, autonomic features 
of cache configuration, data replication and session 
redirection are designed and implemented in a 
prototype. Third, experimental evaluations of the 
prototype with I/O-intensive benchmark demonstrate 
that it can automatically and substantially improve the 
performance and reliability of Grid data access. 

The rest of this paper is organized as follows. 
Section 2 introduces background of the proposed 
approach. Section 3 discusses the autonomic system 
architecture by explaining the autonomic data 
management services and their interactions. Section 4 
presents experimental evaluations of the prototype and 
Section 5 concludes the paper. 
 
2. Background 

Grid Virtual File System (GVFS) is a virtualized 
distributed file system [10] for providing high-
performance data access in Grid environments and 
seamless integration with unmodified applications. It 
leverages existing NFS (Network File System [6]) 
support in operating systems, and employs user-level 
proxies to authenticate and forward RPCs (Remote 
Procedure Calls) between the native NFS client and 
server and map user identities between different 
domains. GVFS helps users to access Grid data the 
same way as using typical LAN distributed file 
systems. It is also an important component of the In-
VIGO virtualization middleware [1] for computational 
Grids. 

Virtualized file system sessions based on GVFS are 
dynamically created to support remote data access for 
applications. A session is established between the 
client, where the application is running, and the server, 
where its data is stored, through the use of client-side 
and server-side proxies. User-level enhancements on 
performance, security and reliability are implemented 
between the proxies and can be customized for each 

session according to application requirements and 
characteristics [29]. 

GVFS sessions can be established, configured and 
terminated through the use of data management 
middleware implemented as WSRF-compliant [11] 
services [31]. These include the File System Service 
(FSS), which runs on every client and server and 
controls the local proxies to establish and configure 
specific GVFS sessions; the Data Scheduler Service 
(DSS), which provides central scheduling and 
customization of sessions through interactions with 
client-side and server-side FSSs; and the Data 
Replication Service (DRS), which manages application 
datasets and their replicas on servers to provide fault 
tolerance and load balancing for sessions. 

This service-oriented data provisioning and 
management framework can serve end-users or a job 
scheduling middleware (e.g. the In-VIGO virtual 
application manager [1]) to prepare data sessions for 
application executions. The data services are key to 
supporting transparent resubmission of jobs for 
autonomic application management systems [27], 
which have been studied to automatically recover jobs 
from performance faults based on monitoring and 
predictions using application execution history and 
resource information stored in knowledgebase.  

The use of a service-oriented framework to control 
the lifetime of sessions and virtualization to intercept, 
modify and forward file system calls provide a 
foundation for the implementation of several 
application-tailored enhancements. However, the 
management of GVFS sessions in a large-scale Grid 
system is still very challenging because changes to the 
workload and the utilization of shared processor, 
network and storage resources are very dynamic. It is 
desired that the sessions can self-manage to achieve 
user or job scheduler expected performance and 
reliability automatically. In the next section, the data 
management services are evolved into autonomic 
elements to work towards this goal (Figure 1). In this 
process, the above mentioned per-application and per-
resource knowledgebase is leveraged to further 
improve the self-managing decisions in this autonomic 
system. 

 
3.  Autonomic Data Management Services 
3.1 Autonomic Data Scheduler Service 

As described earlier, the DSS schedules GVFS 
sessions for application executions. It interacts with 
DRS to request data replication and interacts with 
client-side and server-side FSSs to create, configure 
and terminate sessions. It is responsible for 
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customizing and isolating different sessions with 
different configurations. One of the most important 
session parameters that can be customized is the size of 
the client-side disk cache maintained by GVFS.  

Kernel NFS clients typically buffer data and 
metadata in memory, but the use of disk caching is rare. 
In wide-area, long-latency applications, the aggressive 
use of disk caching can be beneficial to several 
applications. Therefore GVFS implements a client-side 
proxy disk cache, which can leverage the large 
capacity of disks to further exploit data locality. 
However, as the dataset size of modern scientific and 
commercial applications grows rapidly, DSS needs to 
carefully manage the storage use for caching, which 
can have an important impact on performance of the 
sessions. 

An application’s remote I/O time can be estimated 
by, 

networkdiskmem

diskdiskmemmem
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×−−×+
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)1(      
 

where N is the total number of remote data requests 
issued by the application; rmem is the memory buffer 
cache hit rate, and rdisk  is the proxy disk cache hit rate; 
tmem, tdisk,  and tnetwork are the average service time of a 
request from memory, local disks and network storage, 
respectively. 

For data intensive Grid applications, typically 
memdisk rr >>  and memdisknetwork ttt >>>> , so the hit 

rate of proxy disk cache is crucial to delivering good 
application performance. A larger cache results in 
better hit rate, because capacity misses and conflict 
misses generally decrease as cache size grows [13]. 
However, the relationship between cache size and hit 
rate is a complex one, depending on the locality of data 
references and the associativity of the cache. Therefore, 
the DSS by default takes a conservative approach of 
configuring the proxy disk cache with a size larger 
than the application’s dataset size. 

There are also important scenarios where DSS 
needs to configure sessions with smaller disk caches. 
For example, when a node is more powerful or closer 
to the data server than the other nodes, it is chosen to 
execute the application because it can provide better 
performance even though its storage cannot hold the 
entire dataset. In another common case, multiple 
applications need to execute on the same node and the 
available disk space is not enough for their datasets. 
DSS can schedule their sessions to run sequentially 
with full-size disk caches. However, it may be 
necessary or more beneficial to configure each session 
with smaller disk caches and run them concurrently, in 
order to meet deadline requirements or achieve shorter 
total runtime. 
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Figure 1: Autonomic data management system consists of autonomic data scheduler service, autonomic 
replication service, and autonomic client- and server-side file system services. They function as self-managing 
autonomic elements, which control the client, server and session of a GVFS data session according to the high-
level objectives, and interact with each other to automatically achieve the desired data provisioning behaviors. 
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If the application’s data access pattern is known 
from the knowledgebase, DSS can use existing 
methods [32] to estimate the session’s miss rate given 
the configured cache size, and then estimate its remote 
I/O performance using the above equation (tnetwork is 
monitored online; N is known from history and offset 
by the already transferred requests which is also 
monitored online 1 ). This information can further 
facilitate DSS to allocate the available storage capacity 
among multiple sessions which are scheduled to the 
same node.  

A session i’s utility Ui represents the value of 
providing a given level of service to the application. It 
can be calculated by considering the deliverable 
session performance and the application priority, 

iii PriorityePerformancU ×= ,  
where shorter runtime and higher priority generate 
greater utility value. Since a session’s remote I/O time 
is affected by its disk cache size, given the available 
storage space as the constraint, the optimal allocation 
is achieved when the total utility from the different 
sessions on the node is maximized. The complexity of 
the optimization algorithm is bounded by the limited 
number of concurrent sessions and possible cache sizes. 

To perform the above analysis, DSS must monitor 
the storage usage and the data server response time  on 
the client. This is realized by interacting with the 
client-side FSS, which operates a monitoring daemon. 
Due to the dynamic and non-dedicated nature of Grid 
resources, environment changes may trigger DSS to 
reconfigure the session parameters. For example, when 
the disk usage is reaching the limit because of other 
local activities, DSS will detect it and reduce the total 
space occupied by the caches to avoid overflowing the 
storage. On the other hand, when more space becomes 
available for Grid use, DSS can expand caches as 
necessary. 

Note that the changing resource availability may 
falsify the prediction which has motivated the end-user 
or the application manager to submit the job on this 
resource. Or even worse, the client node may crash and 
fail the job execution. An autonomic application 
manager should subscribe to these changes and 
accordingly resubmit or resume the job to another 
resource with a new data session prepared by DSS. 
This is beyond the scope of this paper. However, the 
server-side fault-tolerance is provided by the 
autonomic DRS. 
                                                           
 
1 Besides of data requests kernel NFS issues a considerate 
number of metadata requests for consistency checks. These 
are typically satisfied by proxy disk cache which overlays 
GVFS consistency models upon the kernel NFS’s [30]. 

 
3.2 Autonomic Data Replication Service 

Data replication has long been recognized as key to 
achieving high availability. In Grid environments 
replication not only needs to be performed across 
servers in order to provide fail-over on server failures, 
but also should be distributed to different sites to 
protect against network partitions. However, limited 
bandwidth and high delay make wide-area replication 
very expensive. Although DRS uses high-throughput 
transfer mechanisms (e.g. GridFTP [2]) to duplicate 
data, the overhead is still considerable for large 
datasets. And because an application’s session cannot 
start until the necessary replicas are ready, this 
overhead needs to be considered into the cost 
associated with the session. 

The choice of the replication degree, i.e. the number 
of replicas, for a given dataset, is a decision that needs 
to be made based on benefit-cost analysis. Typically at 
least two replicas are required for each dataset, so that 
an application can continue its execution in presence of 
infrequent failures. As the failure rate goes higher, 
more replicas are required to provide good reliability, 
but the cost from replica creation (and teardown) is 
also increased. Although it is generally difficult to 
predict a particular data server’s failure rate or MTTF 
(Mean-Time-To-Failure), it can be estimated based on 
observation and analysis. Initially every server has a 
hypothetical failure rate stored in the knowledgebase, 
and it is adjusted and updated by DRS as failures 
happen over time. Gradually the value becomes more 
representative of the server’s actual reliability.  

The available storage capacity for replica placement 
is shared among the existing sessions. The replicas 
prepared for a past application execution may also 
occupy disk space because a lazy style of cleanup is 
used, where a replica is not removed immediately after 
its session finishes, in anticipation of future use of the 
same dataset. Therefore, the storage management takes 
into account the values of different datasets, in which 
higher priority applications’ datasets have higher 
values, and live sessions’ datasets always value more 
than those that are not currently in use. 

Based on the above considerations, a utility 
function is also used to solve the replication degree 
and placement problem. The utility i

dU  of having the 
ith replica for dataset d is computed by the product of 
the dataset’s value Vd, and the reliability i

dR provided 

by the its replicas, ∏
=

−=
i

j

j
d

i
d rR

1

1 , where j
dr is the 

failure probability of dataset d’s jth replica (it is 
decided by the failure rate of the data server where this 
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replica is stored). The cost of creating these replicas is  

∑
=

=
i

j

j
d

i
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1

, where j
dc is the overhead from copying 

the dataset to the jth replica’s data sever from the 
nearest existing replica. 

When considering adding a replica for a dataset, its 
utility and cost and reliability constraints are used to 
decide whether to add it and where to place it, as 
follows: 

max
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where Rmin is the desired minimum level of reliability 
for the dataset and Cmax is the maximum tolerable 
replica creation overhead. This algorithm tends to 
place a replica to the more reliable servers when 
reliability is more important, and put it to the closer 
servers if cost is more concerned. When multiple 
allocations are available, DRS chooses the server that 
has the best fit available space for the dataset’s size. If 
replacement is necessary, it is decided based on the 
replicas’ utilities. 

When a data server failure occurs, the running 
sessions’ replicas on that server need to be promptly 
regenerated in order to minimize the time windows in 
which the necessary replication degrees are not 
satisfied for the datasets. In this process, human-
intervention should be avoided because it tends to be 
slow and costly, which means autonomic replica 
regeneration also needs to be supported by DRS.  Last 
but not least, the impact of failures on applications 
should also be reduced to the minimum. It is desirable 
that applications can continue their executions without 
interruptions even in face of failures. This is realized 
by the autonomic FSS and will be discussed shortly. 

DRS achieves autonomic replica regeneration by 
means of automatic failure detection and replica 
reconfiguration. A failure is discovered by DRS 
through notification from the DSS which detects a 
session failure, or by the DRS’s periodic contacts with 
the server-side FSS for the purpose of storage usage 
monitoring. Note that the client-side FSS may not 
realize a failure because of the use of caching. And a 
failure reported by it can be caused by network 
partitioning between the client and server. This case is 
confirmed by the DRS if it can still connect to that 
server, and then only the datasets that are used by this 
particular client need to be regenerated. 

Once a failure is determined, DRS immediately 
reconfigures the storage allocation using the above 
algorithm and regenerates the lost replicas for the 

running sessions on the newly selected data servers. 
The information about these new replicas is also 
informed to DSS, so that it can reconfigure the 
concerned sessions to use them in need of fail-over. 
 
3.3 Autonomic File System Service 

The client-side FSS facilitates the task of the 
autonomic DSS by monitoring storage usage and 
server-response time, and executing the session 
configurations decided by DSS. As discussed in 
Section 3.1, FSS controls the proxy to shrink or 
expand a session’s disk cache as instructed by DSS. A 
proxy disk cache is structured as file banks which 
contain data blocks hashed according to their file 
handles and offsets. Sophisticated algorithms can be 
conceived to reduce a cache’s size by evicting least 
recently used blocks and rehashing the other blocks. 
However, this often incurs substantial overhead 
perceived by the application. Instead, the proxy 
removes the least-used and most-clean file banks from 
the cache till the required shrinkage is achieved. This 
needs only a simple remapping of file banks but not 
any rehashing of data blocks, and the new cache size 
can immediately take effect. 

Client-side FSS is also the key to realizing non-
interrupt fail-over in presence of server-side failures, 
including data server node failure, network partitioning 
between the client and the server, and server or 
network overloading. These are detected when a major 
timeout (e.g. 100 times of the average response time) 
occurs to a data request. In order to recover from the 
fault, the proxy immediately redirects the session to the 
backup data server. Transparent session redirection is 
accomplished by the proxy via mapping the file 
handles among the replica servers. The FSS also 
reports the detected fault to DSS so that it can ask DRS 
to take actions on replica regeneration. 

To achieve non-interrupt fail-over, a session uses an 
active-style replication among the replicas. Every data 
modification request issued by the application is 
multicast to the session’s sever-side proxies and 
performed on all the replicas, and it does not return 
until the client-side proxy has received successful 
response from everyone. Consequently each replica 
has the exact same copy of the dataset during the entire 
session, and if any of them crashes, it generally has no 
impact upon the performance of the application since 
the remaining replicas can continue to service as usual.  

Although it is necessary to write-all, a session can 
choose to use read-all or read-one. In the former case 
read operations are also performed on all the replicas. 
This model is employed to further improve reliability 
against not only server crashes, but also Byzantine 
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failures, in which the client-side proxy collects and 
compares all the replies and then decides on the correct 
one. However, the disadvantage of this model is that it 
bounds the performance of the session to the slowest 
replica server all the time. On the other hand, it is often 
safe to assume that a successful data access operation 
is correct because there are other mechanisms from 
hardware to software that are in place and can promise 
that an error would not happen without being noticed. 
Read operations are the most common ones for typical 
applications, and thus the most valuable to optimize to 
achieve speedup according to Amdahl’s Law. 
Therefore, GVFS sessions typically use the read-
one/write-all replication model. 

This model relies on client-side FSS’ autonomic 
functions to choose the best replica server to perform 
read operations throughout a session. The chosen 
server is called the primary server for the session. It is 
decided from the session’s replica servers based on the 
performance that can be delivered for the application’s 
remote I/O operations. The primary server can change 
over time as network conditions and server loads vary. 
So the FSS monitors the performance of the replica 
servers periodically using a monitoring daemon. 
However, it is important to design an accurate and low 
overhead mechanism to measure the performance. 

From a session client’s point of view, the response 
time of a remote data request is determined by the 
network delay, the server CPU’s processing delay and 
the server disk’s data access delay. Simple network 
probing mechanisms, e.g. ping, can give information 
about the network’s performance, but not the server’s. 
Using null RPC requests to the server incurs little 
overhead and can measure both the first and the second 
delays, but it cannot reveal the server’s I/O load and 
disk performance. Instead, the monitoring daemon 
issues very small writes on the GVFS partition and 
uses the response times to estimate the performance 
that can be delivered by the server for the session. 

Writes are used in the measurement because it is 
difficult to prevent the effect of server-side caching 
(processor caching and memory buffering) with read 
operations. The monitoring daemon periodically 
performs a one-byte write at a different block of a 
hidden remote file, and requests the server to commit 
the write so as to avoid the effect of server-side write-
delay. Even though the hidden file’s size may reach a 
large value for a long session, it does not actually 
occupy much space on disk because the server’s file 
system uses holes on this file. And to further save the 
overhead, the monitoring daemon automatically wraps 
around to write from the first block again after a few 
hundreds of probes have been made. 

Because the monitoring is done outside of the proxy, 
who is responsible of processing application’s data 
requests, the session’s performance is intact. FSS can 
use well-known time series analysis algorithms to 
predict the replica servers’ future performance based 
on the observed response times, and then make  
decisions on primary server selection. Complex 
algorithms are not suitable because they would 
intensively compete for CPU with the running 
applications and not necessarily give the best 
predictions. On the other hand, simpler algorithms 
have been proved efficient and effective in many cases 
[23]. In the prototype exponential smoothing is used. 
Once the primary server is planed to change, the FSS 
controls the proxy to switch transparently. 

The autonomic server-side FSS monitors the 
server’s storage usage, which helps the autonomic 
DRS to decide replica placement. It also monitors the 
response times of RPC requests forwarded by the 
server-side proxy to the data server. The server is not 
necessarily the proxy’s local host, but can be a 
virtualized server which consolidates network attached 
devices [3]. There are well studied algorithms [20] that 
provide load balancing in these scenarios which can be 
leveraged by the FSS and hence are not the focus of 
this paper. 

 
4. Experiments 
4.1 Setup 

A prototype for the proposed architecture has been 
implemented and its autonomic features are evaluated 
in this section. VMware-based virtual machines are 
used to setup the file system clients and servers, which 
are hosted on two physical servers. Each physical 
server has dual 2.4GHz hyper-threaded Xeon 
processors and 1.5GB memory. Each VM is 
configured with 64MB memory and runs SUSE 
LINUX 9.2. The emphasis of the experiments is in 
wide area environments, which are emulated using 
NIST Net. Unless otherwise noted, every link is 
configured with a typical wide area RTT of 40ms. 

The experiments are conducted by using a typical 
file system benchmark, Iozone, to represent the I/O 
part of typical Grid applications. The benchmark is 
executed on the client nodes with input accessed from 
the data servers via GVFS. The GVFS sessions are 
virtualized upon NFSv3, using 32KB data block 
transfer, and the data servers export the file system 
without write delay and with synchronous access. 
Every experiment is started with cold kernel buffer and 
GVFS disk caches by unmouting the file system and 
flushing the disk cache. 
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4.2 Autonomic Session Redirection 

In a Grid environment network latency and 
throughput are often affected by the existence of 
parallel TCP transfers [17], for example, the popular 
use of GridFTP [2]. Figure 2 shows the latency 
between two nodes under such influence in a real 
wide-area setup. Each node is located in a different 
100Mbps LAN and there are parallel TCP transfers 
between another pair of nodes from these two LANs. 
The data demonstrate that the latency grows rapidly as 
the number of parallel TCP streams used by this third-
party transfer increases. 

Such a scenario is emulated in the experiment and 
used to study the effectiveness of autonomic session 
redirection in the presence of network performance 
fluctuations. The client node is connected to two data 
servers (Server 1 and Sever 2) via two independently 
emulated WAN links, where each link’s latency varies 
randomly with the values in Figure 2 in existence of 0, 
2, 4 and 8 parallel TCP streams, and with decreasing 
probabilities for these values.  

The Iozone benchmark is executed on the client 
node, which reads and rereads a 256MB file accessed 
through GVFS with different data server 
configurations: using Server 1 statically; using Server 
2 statically; and using Autonomic session redirection 
between these servers dynamically. The average server 

response times are collected every 10 seconds 
throughout the execution of the benchmark, as shown 
in Figure 3(a). 

The results show that with autonomic redirection 
the GVFS session can almost always choose the better 
link to support data access, and consequently the 
runtime of the benchmark is about 13% better than 
using Server 1  and 16% better than using Server 2, in 
the given network environment. 

The second setup considers the influence of server 
load variations to the performance of a session. I/O 
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Figure 2. Network RTT between WAN-connected 
nodes influenced by third-party parallel TCP transfer. 
Each node is located in a different 100Mbps LAN; 
another pair of nodes from these LANs use IPerf to 
transfer data with multiple TCP streams. 
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Figure 3. The average response times during the execution of Iozone (read/reread mode) on the client node with a 
256MB input accessed through GVFS with different data server configurations: using Server 1 statically; using 
Server 2 statically; and using Autonomic session redirection between these servers dynamically 
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intensive jobs (executions of Iozone with read/re-read 
of different 256MB input files) are loaded to the server 
following a Poisson process, and the intensity is varied 
by randomly choosing the number of parallel jobs 
between 0 and 6. Then the benchmark is executed with 
the same configurations as above. The average server 
response times are collected every 60 seconds 
throughout the execution and shown in Figure 3(b). 

The results also demonstrate that autonomic 
redirection can achieve the best server response time, 
and helps the benchmark to run 16% faster than using 
Server 2, and 29% faster than using Server 1. 
 
4.3 Autonomic Cache Configuration 

The second experiment studies the use of autonomic 
cache configuration by the DSS while scheduling 
different data sessions. In the setup two tasks are about 
to run on the same client node, where each task 
executes Iozone with random reading of a different 
256MB file accessed from the data server via GVFS. 
The DSS needs to prepare two data sessions for these 
tasks but the available storage on the client can only 
hold 256MB of disk cache. So it has three different 
options for the configurations of these sessions: A, 
starts the first session with full disk cache and the 
second one without caching, concurrently; B, starts the 
two sessions sequentially with full disk cache for each 
session; Auto, starts the sessions concurrently and 
autonomically splits up the available storage between 
the sessions’ caches based on their utilities (in this 
setup each session gets half of the full cache because 
they are equally important). 

Figure 4 shows the runtimes of the jobs as well as 
their total runtime and total number of requests 

received by the server during their executions. 
Compared to A, the autonomic configuration provides 
better fairness between the jobs and also greatly 
reduces the server load (the server received requests is 
reduced by 18%); compared to B, the autonomic 
configuration’s total runtime is much shorter (reduced 
by 40%). 

 
4.4 Autonomic Data Replication 

This experiment investigates the autonomic data 
replication in presence of server-side node or network 
failures. A series of tasks are launched on the client 
node sequentially, where each one runs Iozone in 
random reading mode with 512MB input accessed 
from the data servers through GVFS. The data servers 
fail randomly, where the failures are modeled as a 
Poisson process with an average interarrival time of 
half an hour. The experiment uses a replication degree 
of 2 for the datasets, and failures are injected on the 
servers by randomly choosing one of them to stop its 
network connection. Two different situations are 
considered for the tasks: independent, each task has an 
independent dataset (the input file) and hence is 
scheduled with a different data session; dependent, the 
tasks have the same dataset and share the same data 
session.  

Figure 5 shows the timelines of the events happened 
during the experiment. In the independent tasks case, 
totally four server-side failures have happened. Each 
failure has caused a new replica to be generated by 
copying the data from the remaining server to a new 
server. Two of the failures have occurred at the 
primary data servers and also triggered the client to 
redirect the connection to the backup server. These all 
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Figure 4: The runtimes of two executions of Iozone (Job 1, Job 2) with randomly reading a 256MB input 
accessed through GVFS, and their total runtime and total number of requests received by the server during their 
executions. Three different cache configurations are used for the sessions: A, starts the first session with full 
disk cache and the second one without caching, concurrently; B, starts the two sessions sequentially with full 
disk cache for each session; Auto, starts the sessions concurrently and autonomically splits up the available 
storage between the sessions’ caches. 
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cause delays in the benchmark’s executions, e.g. the 
second run takes the longest time to finish because two 
failures have occurred during that run. Nonetheless, 
every run has successfully completed regardless of the 
failures. 

In the dependent tasks case, the warm disk cache 
not only substantially reduces the runtime of the 
benchmark, but also makes the client completely 
unaware of server-side failures and delays. 
 
5. Related Work 

Autonomic computing addresses the complexity of 
managing large-scale, heterogeneous computing 
systems by endowing systems and their components 
with the capability of self-managing according to high-
level objectives [15]. The building blocks of an 
autonomic system are autonomic elements, which 
manage their own resources/services guided by 
policies, and interact with other autonomic elements to 
realize the desired system-level behaviors [24]. This 
paper follows this approach to construct autonomic 
Grid data management system by building the services 
as self-managing and interacting autonomic elements. 

Related Grid data management solutions such as 
GridFTP [2] and GASS [5] provide APIs upon which 
applications can be programmed to access data on the 

Grid; Legion [25] employs a modified NFS server to 
provide access to a remote file system; The Condor 
system [16] uses system call interception to support 
remote I/O by re-linking applications. This paper 
differentiates from these efforts in that GVFS-based 
data sessions allow unmodified application binaries to 
access Grid data using existing operating system 
clients/servers, and support application-tailored per-
session customizations. 

BAD-FS [4] also leverages middleware control to 
enable application-specific file system optimizations, 
however, it is batch-job oriented and does not address 
the reliability issues of the data servers; [12] is another 
framework which improves performance and fault-
tolerance of bulk data transfers. In contrast, the 
approach of this paper can support the important 
interactive type of applications, and provide non-
interrupt recovery in face of server-side failures. 

Data replication has long been recognized as key to 
achieving high availability [18]. Wide-area replications 
have also been studied by recent research on Web 
Content Distribution Network (CDN) [19] and wide-
area file system [21]. [7] develops wide-area data 
replication based on Globus RFT service and GridFTP. 
In [14] a utility-based algorithm is used to decide the 
replication degree for resource managers. IBM 
autonomic storage manager implements policy-based 

(a) independent tasks 

(b) dependent tasks 

Figure 5. The timelines of the events happened during a series of executions of Iozone. Each run randomly 
reads a 512MB input accessed from the data servers through GVFS. The data servers fail randomly, and replica 
regenerations are triggered accordingly. In (a), the executions are independent and are supported by different 
GVFS sessions; in (b), the executions use the same dataset and share the same session. 
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storage allocation [9]. Automatic replica generation 
and distribution are developed in CDN [22] and peer-
to-peer storage system [28]. Compared to these 
systems, this paper considers autonomic storage and 
replica management in the context of supporting 
dynamic Grid-wide file systems which provides user-
transparent and application-tailored Grid data access. 

 
6. Conclusion and Future Work 

This paper addresses the challenge of Grid data 
management by constructing autonomic data 
management system based on application-tailored 
GVFS sessions and autonomic management services. 
Important autonomic features are implemented in the 
system and demonstrated by the prototype through 
experiments. 

Many intriguing research subjects can be studied 
based on this framework. Among others, our future 
work is focused on: optimize proxy disk cache by 
making intelligent decisions on prefetching, block 
replacement and write-back etc., based on learning of 
application’s data access pattern; interact with 
autonomic application manager to achieve utility-
driven automatic checkpointing and resuming. 
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