
1

Towards Autonomic Grid Data Management with Virtualized Distributed File
Systems

Ming Zhao Jing Xu Renato J. Figueiredo
Advanced Computing and Information Systems Laboratory (ACIS)

Electrical and Computer Engineering
University of Florida, Gainesville, Florida

{ming, jxu, renato}@acis.ufl.edu

Abstract

This paper proposes an autonomic Grid data
management architecture based on virtualized
distributed file systems and WSRF-compliant
management services. Autonomic functions are
integrated into the services to provide self-managing
control over the different entities of Grid-wide file
system session, in accordance with high-level
objectives, and operate together to automatically
achieve the desired data provisioning behaviors.
Important autonomic features are implemented in this
system on cache configuration, data replication and
session redirection. Experiments with the prototype
demonstrate that this architecture can automatically
and substantially improve the performance and
reliability of Grid data access.

1. Introduction

Computational “Grids” aggregate computing and
storage resources among multiple institutions to foster
collaborations through shared access to large volumes
of data and high-performance machines. Grid data
management is a challenging task because of the
heterogeneous, dynamic and large-scale nature of Grid
environments. In this paper we present a framework
that enables the implementation of autonomic
techniques to deal with these challenges, while
supporting well-known distributed file system
interfaces for data access. Furthermore, the proposed
approach requires no modifications to operating
systems typically employed in Grid resources through
the use of user-level virtualization techniques.

The Grid data management framework described in
this paper is architected to address two important
questions. First, how to provide data with application-
tailored optimizations? Typically, operating systems
are designed to support general-purpose applications,

but it is often the case that “one size does not fit all.”
To achieve the best performance and reliability for a
Grid application, data provisioning needs to be
customized according to the application’s requirements
and characteristics.

Because an optimization tailored for one application
(e.g. aggressive pre-fetching of file contents) may
result in performance degradation for several others
(e.g. sparse files, databases), application tailored
features are typically not implemented in general-
purpose O/S kernels. In addition, kernel-level
modifications are difficult to port and deploy, notably
in shared environments. Toolkits based solutions
typically give users powerful APIs to program remote
data access with desired behaviors, but few
programmers are skilled to make effective use of such
APIs. Instead, our approach provides applications and
users with a familiar file system interface.

Second, how to manage data provisioning in
dynamically changing environments? Customization
often implies the consideration of various relevant
factors and tuning of many parameters, in accordance
with the desired behaviors and the surrounding
environment. Dynamically changing availability of
Grid resources further requires continuous monitoring
of the data provisioning progress and timely
reconfiguration.

In a large Grid system, these requirements are
beyond the capability of end-users and even system
administrators. Yet the goals of users or administrators
are rather simple and explicit. From an application
user’s point of view, it is desired that the job execution
is fast, responsive and reliable; from a resource
provider’s point of view, it is desired that the resource
utilization is healthy and profitable.

This paper addresses these questions by proposing
an autonomic Grid data management system based on
virtualized Grid File Systems (GVFS), and autonomic
data management services. GVFS employs user-level

2

virtualizations to provide user-transparent Grid data
access with application-tailored enhancements.
Autonomic services are designed as self-managing
elements to control different entities of GVFS sessions
and operate together to automatically achieve the
desired data provisioning behaviors for the
applications.

 The contributions of this paper are as follows. First,
we present a novel autonomic Grid data management
framework upon which automatic monitoring,
configuring, optimizing and healing of application-
tailored Grid data provisioning can be achieved
according to high-level objectives, and hence reduce
management complexity and human intervention.
Second, based on this framework, autonomic features
of cache configuration, data replication and session
redirection are designed and implemented in a
prototype. Third, experimental evaluations of the
prototype with I/O-intensive benchmark demonstrate
that it can automatically and substantially improve the
performance and reliability of Grid data access.

The rest of this paper is organized as follows.
Section 2 introduces background of the proposed
approach. Section 3 discusses the autonomic system
architecture by explaining the autonomic data
management services and their interactions. Section 4
presents experimental evaluations of the prototype and
Section 5 concludes the paper.

2. Background

Grid Virtual File System (GVFS) is a virtualized
distributed file system [10] for providing high-
performance data access in Grid environments and
seamless integration with unmodified applications. It
leverages existing NFS (Network File System [6])
support in operating systems, and employs user-level
proxies to authenticate and forward RPCs (Remote
Procedure Calls) between the native NFS client and
server and map user identities between different
domains. GVFS helps users to access Grid data the
same way as using typical LAN distributed file
systems. It is also an important component of the In-
VIGO virtualization middleware [1] for computational
Grids.

Virtualized file system sessions based on GVFS are
dynamically created to support remote data access for
applications. A session is established between the
client, where the application is running, and the server,
where its data is stored, through the use of client-side
and server-side proxies. User-level enhancements on
performance, security and reliability are implemented
between the proxies and can be customized for each

session according to application requirements and
characteristics [29].

GVFS sessions can be established, configured and
terminated through the use of data management
middleware implemented as WSRF-compliant [11]
services [31]. These include the File System Service
(FSS), which runs on every client and server and
controls the local proxies to establish and configure
specific GVFS sessions; the Data Scheduler Service
(DSS), which provides central scheduling and
customization of sessions through interactions with
client-side and server-side FSSs; and the Data
Replication Service (DRS), which manages application
datasets and their replicas on servers to provide fault
tolerance and load balancing for sessions.

This service-oriented data provisioning and
management framework can serve end-users or a job
scheduling middleware (e.g. the In-VIGO virtual
application manager [1]) to prepare data sessions for
application executions. The data services are key to
supporting transparent resubmission of jobs for
autonomic application management systems [27],
which have been studied to automatically recover jobs
from performance faults based on monitoring and
predictions using application execution history and
resource information stored in knowledgebase.

The use of a service-oriented framework to control
the lifetime of sessions and virtualization to intercept,
modify and forward file system calls provide a
foundation for the implementation of several
application-tailored enhancements. However, the
management of GVFS sessions in a large-scale Grid
system is still very challenging because changes to the
workload and the utilization of shared processor,
network and storage resources are very dynamic. It is
desired that the sessions can self-manage to achieve
user or job scheduler expected performance and
reliability automatically. In the next section, the data
management services are evolved into autonomic
elements to work towards this goal (Figure 1). In this
process, the above mentioned per-application and per-
resource knowledgebase is leveraged to further
improve the self-managing decisions in this autonomic
system.

3. Autonomic Data Management Services
3.1 Autonomic Data Scheduler Service

As described earlier, the DSS schedules GVFS
sessions for application executions. It interacts with
DRS to request data replication and interacts with
client-side and server-side FSSs to create, configure
and terminate sessions. It is responsible for

3

customizing and isolating different sessions with
different configurations. One of the most important
session parameters that can be customized is the size of
the client-side disk cache maintained by GVFS.

Kernel NFS clients typically buffer data and
metadata in memory, but the use of disk caching is rare.
In wide-area, long-latency applications, the aggressive
use of disk caching can be beneficial to several
applications. Therefore GVFS implements a client-side
proxy disk cache, which can leverage the large
capacity of disks to further exploit data locality.
However, as the dataset size of modern scientific and
commercial applications grows rapidly, DSS needs to
carefully manage the storage use for caching, which
can have an important impact on performance of the
sessions.

An application’s remote I/O time can be estimated
by,

networkdiskmem

diskdiskmemmem

trrN
trNtrNT

×−−×+
××+××=

)1(

where N is the total number of remote data requests
issued by the application; rmem is the memory buffer
cache hit rate, and rdisk is the proxy disk cache hit rate;
tmem, tdisk, and tnetwork are the average service time of a
request from memory, local disks and network storage,
respectively.

For data intensive Grid applications, typically
memdisk rr >> and memdisknetwork ttt >>>> , so the hit

rate of proxy disk cache is crucial to delivering good
application performance. A larger cache results in
better hit rate, because capacity misses and conflict
misses generally decrease as cache size grows [13].
However, the relationship between cache size and hit
rate is a complex one, depending on the locality of data
references and the associativity of the cache. Therefore,
the DSS by default takes a conservative approach of
configuring the proxy disk cache with a size larger
than the application’s dataset size.

There are also important scenarios where DSS
needs to configure sessions with smaller disk caches.
For example, when a node is more powerful or closer
to the data server than the other nodes, it is chosen to
execute the application because it can provide better
performance even though its storage cannot hold the
entire dataset. In another common case, multiple
applications need to execute on the same node and the
available disk space is not enough for their datasets.
DSS can schedule their sessions to run sequentially
with full-size disk caches. However, it may be
necessary or more beneficial to configure each session
with smaller disk caches and run them concurrently, in
order to meet deadline requirements or achieve shorter
total runtime.

WAN

M

ExecuteMonitor

Analyze Plan

Response time
Storage usage

Performance

Redirect
Reconfigure

Session conf.

Autonomic Client-side
File System Service

ProxyC2

GVFS SessionProxy
C1

Proxy
S2

Proxy
S1

ExecuteMonitor

Analyze Plan

Response time
Storage usage

Performance
Reliability

Reconfigure
Replicate

Session conf.
Replication

Autonomic Data Scheduler
and Replication Services

ExecuteMonitor

Analyze Plan

Response time
Storage usage

Performance

Reassign

Load
balancing

Autonomic Server-side
File System Service

Figure 1: Autonomic data management system consists of autonomic data scheduler service, autonomic
replication service, and autonomic client- and server-side file system services. They function as self-managing
autonomic elements, which control the client, server and session of a GVFS data session according to the high-
level objectives, and interact with each other to automatically achieve the desired data provisioning behaviors.

4

If the application’s data access pattern is known
from the knowledgebase, DSS can use existing
methods [32] to estimate the session’s miss rate given
the configured cache size, and then estimate its remote
I/O performance using the above equation (tnetwork is
monitored online; N is known from history and offset
by the already transferred requests which is also
monitored online 1). This information can further
facilitate DSS to allocate the available storage capacity
among multiple sessions which are scheduled to the
same node.

A session i’s utility Ui represents the value of
providing a given level of service to the application. It
can be calculated by considering the deliverable
session performance and the application priority,

iii PriorityePerformancU ×= ,
where shorter runtime and higher priority generate
greater utility value. Since a session’s remote I/O time
is affected by its disk cache size, given the available
storage space as the constraint, the optimal allocation
is achieved when the total utility from the different
sessions on the node is maximized. The complexity of
the optimization algorithm is bounded by the limited
number of concurrent sessions and possible cache sizes.

To perform the above analysis, DSS must monitor
the storage usage and the data server response time on
the client. This is realized by interacting with the
client-side FSS, which operates a monitoring daemon.
Due to the dynamic and non-dedicated nature of Grid
resources, environment changes may trigger DSS to
reconfigure the session parameters. For example, when
the disk usage is reaching the limit because of other
local activities, DSS will detect it and reduce the total
space occupied by the caches to avoid overflowing the
storage. On the other hand, when more space becomes
available for Grid use, DSS can expand caches as
necessary.

Note that the changing resource availability may
falsify the prediction which has motivated the end-user
or the application manager to submit the job on this
resource. Or even worse, the client node may crash and
fail the job execution. An autonomic application
manager should subscribe to these changes and
accordingly resubmit or resume the job to another
resource with a new data session prepared by DSS.
This is beyond the scope of this paper. However, the
server-side fault-tolerance is provided by the
autonomic DRS.

1 Besides of data requests kernel NFS issues a considerate
number of metadata requests for consistency checks. These
are typically satisfied by proxy disk cache which overlays
GVFS consistency models upon the kernel NFS’s [30].

3.2 Autonomic Data Replication Service

Data replication has long been recognized as key to
achieving high availability. In Grid environments
replication not only needs to be performed across
servers in order to provide fail-over on server failures,
but also should be distributed to different sites to
protect against network partitions. However, limited
bandwidth and high delay make wide-area replication
very expensive. Although DRS uses high-throughput
transfer mechanisms (e.g. GridFTP [2]) to duplicate
data, the overhead is still considerable for large
datasets. And because an application’s session cannot
start until the necessary replicas are ready, this
overhead needs to be considered into the cost
associated with the session.

The choice of the replication degree, i.e. the number
of replicas, for a given dataset, is a decision that needs
to be made based on benefit-cost analysis. Typically at
least two replicas are required for each dataset, so that
an application can continue its execution in presence of
infrequent failures. As the failure rate goes higher,
more replicas are required to provide good reliability,
but the cost from replica creation (and teardown) is
also increased. Although it is generally difficult to
predict a particular data server’s failure rate or MTTF
(Mean-Time-To-Failure), it can be estimated based on
observation and analysis. Initially every server has a
hypothetical failure rate stored in the knowledgebase,
and it is adjusted and updated by DRS as failures
happen over time. Gradually the value becomes more
representative of the server’s actual reliability.

The available storage capacity for replica placement
is shared among the existing sessions. The replicas
prepared for a past application execution may also
occupy disk space because a lazy style of cleanup is
used, where a replica is not removed immediately after
its session finishes, in anticipation of future use of the
same dataset. Therefore, the storage management takes
into account the values of different datasets, in which
higher priority applications’ datasets have higher
values, and live sessions’ datasets always value more
than those that are not currently in use.

Based on the above considerations, a utility
function is also used to solve the replication degree
and placement problem. The utility i

dU of having the
ith replica for dataset d is computed by the product of
the dataset’s value Vd, and the reliability i

dR provided

by the its replicas, ∏
=

−=
i

j

j
d

i
d rR

1

1 , where j
dr is the

failure probability of dataset d’s jth replica (it is
decided by the failure rate of the data server where this

5

replica is stored). The cost of creating these replicas is

∑
=

=
i

j

j
d

i
d cC

1

, where j
dc is the overhead from copying

the dataset to the jth replica’s data sever from the
nearest existing replica.

When considering adding a replica for a dataset, its
utility and cost and reliability constraints are used to
decide whether to add it and where to place it, as
follows:

max

min ,
,

CC
RR

RVU

i
d

i
d

i
ddd

≤

≥

×=

where Rmin is the desired minimum level of reliability
for the dataset and Cmax is the maximum tolerable
replica creation overhead. This algorithm tends to
place a replica to the more reliable servers when
reliability is more important, and put it to the closer
servers if cost is more concerned. When multiple
allocations are available, DRS chooses the server that
has the best fit available space for the dataset’s size. If
replacement is necessary, it is decided based on the
replicas’ utilities.

When a data server failure occurs, the running
sessions’ replicas on that server need to be promptly
regenerated in order to minimize the time windows in
which the necessary replication degrees are not
satisfied for the datasets. In this process, human-
intervention should be avoided because it tends to be
slow and costly, which means autonomic replica
regeneration also needs to be supported by DRS. Last
but not least, the impact of failures on applications
should also be reduced to the minimum. It is desirable
that applications can continue their executions without
interruptions even in face of failures. This is realized
by the autonomic FSS and will be discussed shortly.

DRS achieves autonomic replica regeneration by
means of automatic failure detection and replica
reconfiguration. A failure is discovered by DRS
through notification from the DSS which detects a
session failure, or by the DRS’s periodic contacts with
the server-side FSS for the purpose of storage usage
monitoring. Note that the client-side FSS may not
realize a failure because of the use of caching. And a
failure reported by it can be caused by network
partitioning between the client and server. This case is
confirmed by the DRS if it can still connect to that
server, and then only the datasets that are used by this
particular client need to be regenerated.

Once a failure is determined, DRS immediately
reconfigures the storage allocation using the above
algorithm and regenerates the lost replicas for the

running sessions on the newly selected data servers.
The information about these new replicas is also
informed to DSS, so that it can reconfigure the
concerned sessions to use them in need of fail-over.

3.3 Autonomic File System Service

The client-side FSS facilitates the task of the
autonomic DSS by monitoring storage usage and
server-response time, and executing the session
configurations decided by DSS. As discussed in
Section 3.1, FSS controls the proxy to shrink or
expand a session’s disk cache as instructed by DSS. A
proxy disk cache is structured as file banks which
contain data blocks hashed according to their file
handles and offsets. Sophisticated algorithms can be
conceived to reduce a cache’s size by evicting least
recently used blocks and rehashing the other blocks.
However, this often incurs substantial overhead
perceived by the application. Instead, the proxy
removes the least-used and most-clean file banks from
the cache till the required shrinkage is achieved. This
needs only a simple remapping of file banks but not
any rehashing of data blocks, and the new cache size
can immediately take effect.

Client-side FSS is also the key to realizing non-
interrupt fail-over in presence of server-side failures,
including data server node failure, network partitioning
between the client and the server, and server or
network overloading. These are detected when a major
timeout (e.g. 100 times of the average response time)
occurs to a data request. In order to recover from the
fault, the proxy immediately redirects the session to the
backup data server. Transparent session redirection is
accomplished by the proxy via mapping the file
handles among the replica servers. The FSS also
reports the detected fault to DSS so that it can ask DRS
to take actions on replica regeneration.

To achieve non-interrupt fail-over, a session uses an
active-style replication among the replicas. Every data
modification request issued by the application is
multicast to the session’s sever-side proxies and
performed on all the replicas, and it does not return
until the client-side proxy has received successful
response from everyone. Consequently each replica
has the exact same copy of the dataset during the entire
session, and if any of them crashes, it generally has no
impact upon the performance of the application since
the remaining replicas can continue to service as usual.

Although it is necessary to write-all, a session can
choose to use read-all or read-one. In the former case
read operations are also performed on all the replicas.
This model is employed to further improve reliability
against not only server crashes, but also Byzantine

6

failures, in which the client-side proxy collects and
compares all the replies and then decides on the correct
one. However, the disadvantage of this model is that it
bounds the performance of the session to the slowest
replica server all the time. On the other hand, it is often
safe to assume that a successful data access operation
is correct because there are other mechanisms from
hardware to software that are in place and can promise
that an error would not happen without being noticed.
Read operations are the most common ones for typical
applications, and thus the most valuable to optimize to
achieve speedup according to Amdahl’s Law.
Therefore, GVFS sessions typically use the read-
one/write-all replication model.

This model relies on client-side FSS’ autonomic
functions to choose the best replica server to perform
read operations throughout a session. The chosen
server is called the primary server for the session. It is
decided from the session’s replica servers based on the
performance that can be delivered for the application’s
remote I/O operations. The primary server can change
over time as network conditions and server loads vary.
So the FSS monitors the performance of the replica
servers periodically using a monitoring daemon.
However, it is important to design an accurate and low
overhead mechanism to measure the performance.

From a session client’s point of view, the response
time of a remote data request is determined by the
network delay, the server CPU’s processing delay and
the server disk’s data access delay. Simple network
probing mechanisms, e.g. ping, can give information
about the network’s performance, but not the server’s.
Using null RPC requests to the server incurs little
overhead and can measure both the first and the second
delays, but it cannot reveal the server’s I/O load and
disk performance. Instead, the monitoring daemon
issues very small writes on the GVFS partition and
uses the response times to estimate the performance
that can be delivered by the server for the session.

Writes are used in the measurement because it is
difficult to prevent the effect of server-side caching
(processor caching and memory buffering) with read
operations. The monitoring daemon periodically
performs a one-byte write at a different block of a
hidden remote file, and requests the server to commit
the write so as to avoid the effect of server-side write-
delay. Even though the hidden file’s size may reach a
large value for a long session, it does not actually
occupy much space on disk because the server’s file
system uses holes on this file. And to further save the
overhead, the monitoring daemon automatically wraps
around to write from the first block again after a few
hundreds of probes have been made.

Because the monitoring is done outside of the proxy,
who is responsible of processing application’s data
requests, the session’s performance is intact. FSS can
use well-known time series analysis algorithms to
predict the replica servers’ future performance based
on the observed response times, and then make
decisions on primary server selection. Complex
algorithms are not suitable because they would
intensively compete for CPU with the running
applications and not necessarily give the best
predictions. On the other hand, simpler algorithms
have been proved efficient and effective in many cases
[23]. In the prototype exponential smoothing is used.
Once the primary server is planed to change, the FSS
controls the proxy to switch transparently.

The autonomic server-side FSS monitors the
server’s storage usage, which helps the autonomic
DRS to decide replica placement. It also monitors the
response times of RPC requests forwarded by the
server-side proxy to the data server. The server is not
necessarily the proxy’s local host, but can be a
virtualized server which consolidates network attached
devices [3]. There are well studied algorithms [20] that
provide load balancing in these scenarios which can be
leveraged by the FSS and hence are not the focus of
this paper.

4. Experiments
4.1 Setup

A prototype for the proposed architecture has been
implemented and its autonomic features are evaluated
in this section. VMware-based virtual machines are
used to setup the file system clients and servers, which
are hosted on two physical servers. Each physical
server has dual 2.4GHz hyper-threaded Xeon
processors and 1.5GB memory. Each VM is
configured with 64MB memory and runs SUSE
LINUX 9.2. The emphasis of the experiments is in
wide area environments, which are emulated using
NIST Net. Unless otherwise noted, every link is
configured with a typical wide area RTT of 40ms.

The experiments are conducted by using a typical
file system benchmark, Iozone, to represent the I/O
part of typical Grid applications. The benchmark is
executed on the client nodes with input accessed from
the data servers via GVFS. The GVFS sessions are
virtualized upon NFSv3, using 32KB data block
transfer, and the data servers export the file system
without write delay and with synchronous access.
Every experiment is started with cold kernel buffer and
GVFS disk caches by unmouting the file system and
flushing the disk cache.

7

4.2 Autonomic Session Redirection

In a Grid environment network latency and
throughput are often affected by the existence of
parallel TCP transfers [17], for example, the popular
use of GridFTP [2]. Figure 2 shows the latency
between two nodes under such influence in a real
wide-area setup. Each node is located in a different
100Mbps LAN and there are parallel TCP transfers
between another pair of nodes from these two LANs.
The data demonstrate that the latency grows rapidly as
the number of parallel TCP streams used by this third-
party transfer increases.

Such a scenario is emulated in the experiment and
used to study the effectiveness of autonomic session
redirection in the presence of network performance
fluctuations. The client node is connected to two data
servers (Server 1 and Sever 2) via two independently
emulated WAN links, where each link’s latency varies
randomly with the values in Figure 2 in existence of 0,
2, 4 and 8 parallel TCP streams, and with decreasing
probabilities for these values.

The Iozone benchmark is executed on the client
node, which reads and rereads a 256MB file accessed
through GVFS with different data server
configurations: using Server 1 statically; using Server
2 statically; and using Autonomic session redirection
between these servers dynamically. The average server

response times are collected every 10 seconds
throughout the execution of the benchmark, as shown
in Figure 3(a).

The results show that with autonomic redirection
the GVFS session can almost always choose the better
link to support data access, and consequently the
runtime of the benchmark is about 13% better than
using Server 1 and 16% better than using Server 2, in
the given network environment.

The second setup considers the influence of server
load variations to the performance of a session. I/O

20

30

40

50

60

70

80

0 2 4 8
Number of parallel TCP transfers

Ne
tw

or
k

RT
T

(m
illi

se
oc

nd
)

Figure 2. Network RTT between WAN-connected
nodes influenced by third-party parallel TCP transfer.
Each node is located in a different 100Mbps LAN;
another pair of nodes from these LANs use IPerf to
transfer data with multiple TCP streams.

0

0.1

0.2

0.3

0.4

0.5

0.6

60 180 300 420 540 660 780 900 1020 1140 1260
Time (second)

R
es

po
ns

e
Ti

m
e

(s
ec

on
d) Server 1

Server 2
Autonomic session redirection

(b)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

10 110 210 310 410 510 610 710 810
Time (second)

R
es

po
ns

e
Ti

m
e

(s
ec

on
d) Server 1 Server 2 Autonomic session redirection(a)

Figure 3. The average response times during the execution of Iozone (read/reread mode) on the client node with a
256MB input accessed through GVFS with different data server configurations: using Server 1 statically; using
Server 2 statically; and using Autonomic session redirection between these servers dynamically

8

intensive jobs (executions of Iozone with read/re-read
of different 256MB input files) are loaded to the server
following a Poisson process, and the intensity is varied
by randomly choosing the number of parallel jobs
between 0 and 6. Then the benchmark is executed with
the same configurations as above. The average server
response times are collected every 60 seconds
throughout the execution and shown in Figure 3(b).

The results also demonstrate that autonomic
redirection can achieve the best server response time,
and helps the benchmark to run 16% faster than using
Server 2, and 29% faster than using Server 1.

4.3 Autonomic Cache Configuration

The second experiment studies the use of autonomic
cache configuration by the DSS while scheduling
different data sessions. In the setup two tasks are about
to run on the same client node, where each task
executes Iozone with random reading of a different
256MB file accessed from the data server via GVFS.
The DSS needs to prepare two data sessions for these
tasks but the available storage on the client can only
hold 256MB of disk cache. So it has three different
options for the configurations of these sessions: A,
starts the first session with full disk cache and the
second one without caching, concurrently; B, starts the
two sessions sequentially with full disk cache for each
session; Auto, starts the sessions concurrently and
autonomically splits up the available storage between
the sessions’ caches based on their utilities (in this
setup each session gets half of the full cache because
they are equally important).

Figure 4 shows the runtimes of the jobs as well as
their total runtime and total number of requests

received by the server during their executions.
Compared to A, the autonomic configuration provides
better fairness between the jobs and also greatly
reduces the server load (the server received requests is
reduced by 18%); compared to B, the autonomic
configuration’s total runtime is much shorter (reduced
by 40%).

4.4 Autonomic Data Replication

This experiment investigates the autonomic data
replication in presence of server-side node or network
failures. A series of tasks are launched on the client
node sequentially, where each one runs Iozone in
random reading mode with 512MB input accessed
from the data servers through GVFS. The data servers
fail randomly, where the failures are modeled as a
Poisson process with an average interarrival time of
half an hour. The experiment uses a replication degree
of 2 for the datasets, and failures are injected on the
servers by randomly choosing one of them to stop its
network connection. Two different situations are
considered for the tasks: independent, each task has an
independent dataset (the input file) and hence is
scheduled with a different data session; dependent, the
tasks have the same dataset and share the same data
session.

Figure 5 shows the timelines of the events happened
during the experiment. In the independent tasks case,
totally four server-side failures have happened. Each
failure has caused a new replica to be generated by
copying the data from the remaining server to a new
server. Two of the failures have occurred at the
primary data servers and also triggered the client to
redirect the connection to the backup server. These all

0

100

200

300

400

500

600

A Auto B

To
ta

l R
un

tim
e

(s
ec

on
d)

0

50

100

150

200

250

300

350

400

A Auto B

R
un

tim
e

(s
ec

on
d)

Job1 Job2

0

2

4

6

8

10

12

14

A Auto B

S
er

ve
r r

ec
ei

ve
d

R
P

C
 re

qu
es

ts
 (K

)

Figure 4: The runtimes of two executions of Iozone (Job 1, Job 2) with randomly reading a 256MB input
accessed through GVFS, and their total runtime and total number of requests received by the server during their
executions. Three different cache configurations are used for the sessions: A, starts the first session with full
disk cache and the second one without caching, concurrently; B, starts the two sessions sequentially with full
disk cache for each session; Auto, starts the sessions concurrently and autonomically splits up the available
storage between the sessions’ caches.

9

cause delays in the benchmark’s executions, e.g. the
second run takes the longest time to finish because two
failures have occurred during that run. Nonetheless,
every run has successfully completed regardless of the
failures.

In the dependent tasks case, the warm disk cache
not only substantially reduces the runtime of the
benchmark, but also makes the client completely
unaware of server-side failures and delays.

5. Related Work

Autonomic computing addresses the complexity of
managing large-scale, heterogeneous computing
systems by endowing systems and their components
with the capability of self-managing according to high-
level objectives [15]. The building blocks of an
autonomic system are autonomic elements, which
manage their own resources/services guided by
policies, and interact with other autonomic elements to
realize the desired system-level behaviors [24]. This
paper follows this approach to construct autonomic
Grid data management system by building the services
as self-managing and interacting autonomic elements.

Related Grid data management solutions such as
GridFTP [2] and GASS [5] provide APIs upon which
applications can be programmed to access data on the

Grid; Legion [25] employs a modified NFS server to
provide access to a remote file system; The Condor
system [16] uses system call interception to support
remote I/O by re-linking applications. This paper
differentiates from these efforts in that GVFS-based
data sessions allow unmodified application binaries to
access Grid data using existing operating system
clients/servers, and support application-tailored per-
session customizations.

BAD-FS [4] also leverages middleware control to
enable application-specific file system optimizations,
however, it is batch-job oriented and does not address
the reliability issues of the data servers; [12] is another
framework which improves performance and fault-
tolerance of bulk data transfers. In contrast, the
approach of this paper can support the important
interactive type of applications, and provide non-
interrupt recovery in face of server-side failures.

Data replication has long been recognized as key to
achieving high availability [18]. Wide-area replications
have also been studied by recent research on Web
Content Distribution Network (CDN) [19] and wide-
area file system [21]. [7] develops wide-area data
replication based on Globus RFT service and GridFTP.
In [14] a utility-based algorithm is used to decide the
replication degree for resource managers. IBM
autonomic storage manager implements policy-based

(a) independent tasks

(b) dependent tasks

Figure 5. The timelines of the events happened during a series of executions of Iozone. Each run randomly
reads a 512MB input accessed from the data servers through GVFS. The data servers fail randomly, and replica
regenerations are triggered accordingly. In (a), the executions are independent and are supported by different
GVFS sessions; in (b), the executions use the same dataset and share the same session.

10

storage allocation [9]. Automatic replica generation
and distribution are developed in CDN [22] and peer-
to-peer storage system [28]. Compared to these
systems, this paper considers autonomic storage and
replica management in the context of supporting
dynamic Grid-wide file systems which provides user-
transparent and application-tailored Grid data access.

6. Conclusion and Future Work

This paper addresses the challenge of Grid data
management by constructing autonomic data
management system based on application-tailored
GVFS sessions and autonomic management services.
Important autonomic features are implemented in the
system and demonstrated by the prototype through
experiments.

Many intriguing research subjects can be studied
based on this framework. Among others, our future
work is focused on: optimize proxy disk cache by
making intelligent decisions on prefetching, block
replacement and write-back etc., based on learning of
application’s data access pattern; interact with
autonomic application manager to achieve utility-
driven automatic checkpointing and resuming.

References
[1] S. Adabala et al, “From Virtualized Resources to Virtual

Computing Grids: The In-VIGO System”, Future
Generation Computing Systems, Vol 21 No. 6, Apr 05.

[2] B. Allcock, et al, “Data Management and Transfer in
High Performance Computational Grid Environments”,
Parallel Computing Journal, Vol. 28 (5), May 2002.

[3] D. Anderson, et al., “Interposed request routing for
scalable network storage”, ACM Transactions on
Computer Systems, 20(1):25–48, February 2002.

[4] J. Bent, et al., “Explicit Control in a Batch-Aware
Distributed File System”, In Proc. 1st NSDI., 2004.

[5] J. Bester, et al., “GASS: A Data Movement and Access
Service for Wide Area Computing Systems”, In Proc. of
the 6th IOPADS, May 1999.

[6] B. Callaghan, NFS Illustrated, Addison-Wesley, 2002.
[7] A. Chervenak, et al., “Wide Area Data Replication for

Scientific Collaborations”, In Proc. 6th IEEE/ACM
International Workshop on Grid Computing, Nov 2005.

[8] G. Coulouris, et al., Distributed Systems: Concepts and
Design, 3rd edition, Addison-Wesley, 2001.

[9] M. Devarakonda1, et al., “Policy-Based Autonomic
Storage Allocation”, In Proc. 14th DSOM, Oct 2003.

[10] R. J. Figueiredo, et al., “Seamless Access to
Decentralized Storage Services in Computational Grids
via a Virtual File System”, In Cluster Computing, 2004.

[11] I. Foster (ed) et al., “Modeling Stateful Resources using
Web Services”, White paper, March 5, 2004.

[12] T. Kosar, et al., "A Framework for Self-optimizing,
Fault-tolerant, High Performance Bulk Data Transfers in

a Heterogeneous Grid Environment", In Proc. of 2nd Int.
Symp. on Parallel and Distributed Computing, Oct 2003.

[13] J. Hennessy and D. Patterson, Computer Architecture: a
Quantitative Approach, 3rd edition, Morgan Kaufmann.

[14] V. Kalogeraki, “Decentralized Resource Management
for Real-Time Object-Oriented Dependable Systems”,
Technical Reports, HPL-2001-93, 2001.

[15] J. O. Kephart, D. M. Chess, “The Vision of Autonomic
Computing”, IEEE Computer, 36(1): 41-50, 2003.

[16] M. Litzkow, M. Livny and M. W. Mutka, “Condor: a
Hunter of Idle Workstations”, In Proc. the 8th Int. Conf.
on Distributed Computing Systems, June 1988.

[17] Dong Lu, et al., “Modeling and Taming Parallel TCP on
the Wide Area Network”, In Proc. IPDPS, April, 2005.

[18] K. Marzullo, F. Schmuck, “Supplying High Availability
with a Standard Network File System”, In Proc. the 8th
Int. Conf. on Distributed Computing Systems, 1988.

[19] L. Qiu, V. N. Padmanabhan, G. M. Voelker, “On the
Placement of Web Server Replicas”, INFOCOM, 2001.

[20] L. W. Russell, S. P. Morgan, and E. G. Chron,
“Clockwork: A New Movement in Autonomic
Systems,” IBM Systems Journal 42, No. 1, 2003.

[21] Y. Saito, et al., “Taming aggressive replication in the
Pangaea wide-area file system”, In Proc. 5th Symp. on
Op. Sys. Design and Impl., Dec 2002.

[22] S. Sivasubramanian, et al., “GlobeDB: Autonomic Data
Replication for Web Applications”, In Proc. the 14th Int.
Conference on World Wide Web, Chiba, Japan, 2005.

[23] R. Wolski, “Dynamically forecasting network
performance using the Network Weather Service”,
Cluster Computing, Volume 1 Issue 1, January 1998.

[24] S. R. White, et al., “An architectural approach to
autonomic computing”, In Proc. 1st ICAC, 2004.

[25] B. White, A. et al., “Grid-based File Access: the Legion
I/O Model”, In Proc. the 9th HPDC, Aug 2000.

[26] R. Wolski, N. Spring, C. Peterson, “Implementing a
performance forecasting system for metacomputing: the
Network Weather Service”, In Proc. of the 1997
ACM/IEEE Conference on Supercomputing, Nov. 1997.

[27] J. Xu, S. Adabala, J. A.B. Fortes, “Towards Autonomic
Virtual Applications in the In-VIGO System”, In Proc.
of 2nd Int. Conf. on Autonomic Computing, 2005.

[28] Haifeng Yu, Amin Vahdat , “Consistent and automatic
replica regeneration”, In TOS, Vol 1, Issue 1, Feb 2005.

[29] M. Zhao, et al., “Supporting Application-Tailored Grid
File System Sessions with WSRF-Based Services”, In
Proc. of 14th HPDC, pages: 24- 33, July, 2005.

[30] M. Zhao and R. J. Figueiredo, “Application-Tailored
Cache Consistency for Wide-Area File Systems”,
Technical Report, October 2005.

[31] M. Zhao, J. Zhang and R. J. Figueiredo, “Distributed
File System Virtualization Techniques Supporting On-
Demand Virtual Machine Environments for Grid
Computing”, Cluster Computing, Vol. 9, Jan 2006.

[32] Y. Zhong, S. G. Dropsho, C. Ding, “Miss rate prediction
across all program inputs”, In Proc. 12th PACT, Oct 03.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

